OrgStats / app.py
evijit's picture
evijit HF Staff
Update app.py
caa5704 verified
raw
history blame
14.9 kB
import json
import gradio as gr
import pandas as pd
import plotly.express as px
import pyarrow.parquet as pq
import os
import requests
from io import BytesIO
import math
# Define pipeline tags (keeping the same ones from the provided code)
PIPELINE_TAGS = [
'text-generation',
'text-to-image',
'text-classification',
'text2text-generation',
'audio-to-audio',
'feature-extraction',
'image-classification',
'translation',
'reinforcement-learning',
'fill-mask',
'text-to-speech',
'automatic-speech-recognition',
'image-text-to-text',
'token-classification',
'sentence-similarity',
'question-answering',
'image-feature-extraction',
'summarization',
'zero-shot-image-classification',
'object-detection',
'image-segmentation',
'image-to-image',
'image-to-text',
'audio-classification',
'visual-question-answering',
'text-to-video',
'zero-shot-classification',
'depth-estimation',
'text-ranking',
'image-to-video',
'multiple-choice',
'unconditional-image-generation',
'video-classification',
'text-to-audio',
'time-series-forecasting',
'any-to-any',
'video-text-to-text',
'table-question-answering',
]
# Model size categories in GB
MODEL_SIZE_RANGES = {
"Small (<1GB)": (0, 1),
"Medium (1-5GB)": (1, 5),
"Large (5-20GB)": (5, 20),
"X-Large (20-50GB)": (20, 50),
"XX-Large (>50GB)": (50, float('inf'))
}
# Filter functions for tags - keeping the same from provided code
def is_audio_speech(repo_dct):
res = (repo_dct.get("pipeline_tag", None) and "audio" in repo_dct.get("pipeline_tag", "").lower()) or \
(repo_dct.get("pipeline_tag", None) and "speech" in repo_dct.get("pipeline_tag", "").lower()) or \
(repo_dct.get("tags", None) and any("audio" in tag.lower() for tag in repo_dct.get("tags", []))) or \
(repo_dct.get("tags", None) and any("speech" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_music(repo_dct):
res = (repo_dct.get("tags", None) and any("music" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_robotics(repo_dct):
res = (repo_dct.get("tags", None) and any("robot" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_biomed(repo_dct):
res = (repo_dct.get("tags", None) and any("bio" in tag.lower() for tag in repo_dct.get("tags", []))) or \
(repo_dct.get("tags", None) and any("medic" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_timeseries(repo_dct):
res = (repo_dct.get("tags", None) and any("series" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_science(repo_dct):
res = (repo_dct.get("tags", None) and any("science" in tag.lower() and not "bigscience" in tag for tag in repo_dct.get("tags", [])))
return res
def is_video(repo_dct):
res = (repo_dct.get("tags", None) and any("video" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_image(repo_dct):
res = (repo_dct.get("tags", None) and any("image" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_text(repo_dct):
res = (repo_dct.get("tags", None) and any("text" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
# Add model size filter function
def is_in_size_range(repo_dct, size_range):
if size_range is None:
return True
min_size, max_size = MODEL_SIZE_RANGES[size_range]
# Get model size in GB from safetensors total (if available)
if repo_dct.get("safetensors") and repo_dct["safetensors"].get("total"):
# Convert bytes to GB
size_gb = repo_dct["safetensors"]["total"] / (1024 * 1024 * 1024)
return min_size <= size_gb < max_size
return False
TAG_FILTER_FUNCS = {
"Audio & Speech": is_audio_speech,
"Time series": is_timeseries,
"Robotics": is_robotics,
"Music": is_music,
"Video": is_video,
"Images": is_image,
"Text": is_text,
"Biomedical": is_biomed,
"Sciences": is_science,
}
def make_org_stats(count_by, org_stats, top_k=20, filter_func=None, size_range=None):
assert count_by in ["likes", "downloads"]
# Apply both filter_func and size_range if provided
def combined_filter(dct):
passes_tag_filter = filter_func(dct) if filter_func else True
passes_size_filter = is_in_size_range(dct, size_range) if size_range else True
return passes_tag_filter and passes_size_filter
# Sort organizations by total count
sorted_stats = sorted(
[(
org_id,
sum(model[count_by] for model in models if combined_filter(model))
) for org_id, models in org_stats.items()],
key=lambda x: x[1],
reverse=True,
)
# Top organizations + Others category
res = sorted_stats[:top_k] + [("Others...", sum(st for auth, st in sorted_stats[top_k:]))]
total_st = sum(st for o, st in res)
# Prepare data for treemap
res_plot_df = []
for org, st in res:
if org == "Others...":
res_plot_df += [("Others...", "other", st * 100 / total_st if total_st > 0 else 0)]
else:
for model in org_stats[org]:
if combined_filter(model):
res_plot_df += [(org, model["id"], model[count_by] * 100 / total_st if total_st > 0 else 0)]
return ([(o, 100 * st / total_st if total_st > 0 else 0) for o, st in res if st > 0], res_plot_df)
def make_figure(count_by, org_stats, tag_filter=None, pipeline_filter=None, size_range=None):
assert count_by in ["downloads", "likes"]
# Determine which filter function to use
filter_func = None
if tag_filter:
filter_func = TAG_FILTER_FUNCS[tag_filter]
elif pipeline_filter:
filter_func = lambda dct: dct.get("pipeline_tag", None) and dct.get("pipeline_tag", "") == pipeline_filter
else:
filter_func = lambda dct: True
# Generate stats with filters
_, res_plot_df = make_org_stats(count_by, org_stats, top_k=25, filter_func=filter_func, size_range=size_range)
# Create DataFrame for Plotly
df = pd.DataFrame(
dict(
organizations=[o for o, _, _ in res_plot_df],
model=[r for _, r, _ in res_plot_df],
stats=[s for _, _, s in res_plot_df],
)
)
df["models"] = "models" # Root node
# Create treemap
fig = px.treemap(df, path=["models", 'organizations', 'model'], values='stats',
title=f"HuggingFace Models - {count_by.capitalize()} by Organization")
fig.update_layout(
margin=dict(t=50, l=25, r=25, b=25)
)
return fig
def download_and_process_models():
"""Download and process the models data from HuggingFace dataset"""
try:
# Create a cache directory
if not os.path.exists('data'):
os.makedirs('data')
# Check if we have cached data
if os.path.exists('data/processed_models.json'):
print("Loading from cache...")
with open('data/processed_models.json', 'r') as f:
return json.load(f)
# URL to the models.parquet file
url = "https://huggingface.co/datasets/cfahlgren1/hub-stats/resolve/main/models.parquet"
print(f"Downloading models data from {url}...")
response = requests.get(url)
if response.status_code != 200:
raise Exception(f"Failed to download data: HTTP {response.status_code}")
# Read the parquet file
table = pq.read_table(BytesIO(response.content))
df = table.to_pandas()
print(f"Downloaded {len(df)} models")
# Process the dataframe into the organization structure we need
org_stats = {}
for _, row in df.iterrows():
model_id = row['id']
# Extract the organization part of the model ID
if '/' in model_id:
org_id = model_id.split('/')[0]
else:
org_id = "unaffiliated"
# Create model entry with needed fields
model_entry = {
"id": model_id,
"downloads": row.get('downloads', 0),
"likes": row.get('likes', 0),
"pipeline_tag": row.get('pipeline_tag'),
"tags": row.get('tags', []),
}
# Add safetensors information if available
if 'safetensors' in row and row['safetensors']:
if isinstance(row['safetensors'], dict) and 'total' in row['safetensors']:
model_entry["safetensors"] = {"total": row['safetensors']['total']}
elif isinstance(row['safetensors'], str):
# Try to parse JSON string
try:
safetensors = json.loads(row['safetensors'])
if isinstance(safetensors, dict) and 'total' in safetensors:
model_entry["safetensors"] = {"total": safetensors['total']}
except:
pass
# Add to organization stats
if org_id not in org_stats:
org_stats[org_id] = []
org_stats[org_id].append(model_entry)
# Cache the processed data
with open('data/processed_models.json', 'w') as f:
json.dump(org_stats, f)
return org_stats
except Exception as e:
print(f"Error downloading or processing data: {e}")
# Return sample data for testing if real data unavailable
return create_sample_data()
def create_sample_data():
"""Create sample data for testing when real data is unavailable"""
print("Creating sample data for testing...")
sample_orgs = ['openai', 'meta', 'google', 'microsoft', 'anthropic', 'stability', 'huggingface']
org_stats = {}
for org in sample_orgs:
org_stats[org] = []
num_models = 5 # Each org has 5 sample models
for i in range(num_models):
model_id = f"{org}/model-{i+1}"
# Random pipeline tag
pipeline_idx = i % len(PIPELINE_TAGS)
pipeline_tag = PIPELINE_TAGS[pipeline_idx]
# Random tags
tags = [pipeline_tag, "sample-data"]
# Random downloads and likes
downloads = int(1000 * (10 ** (org_stats.keys().index(org) % 3))) # Different magnitudes
likes = int(downloads * 0.05) # 5% like rate
# Random model size in bytes (from 100MB to 100GB)
model_size = (10**8) * (10 ** (i % 3)) # Different magnitudes
org_stats[org].append({
"id": model_id,
"downloads": downloads,
"likes": likes,
"pipeline_tag": pipeline_tag,
"tags": tags,
"safetensors": {"total": model_size}
})
return org_stats
# Create Gradio interface
with gr.Blocks() as demo:
models_data = gr.State(value=None) # To store loaded data
with gr.Row():
gr.Markdown("""
## HuggingFace Models TreeMap
This app shows how different organizations contribute to the HuggingFace ecosystem with their models.
Use the filters to explore models by different metrics, tags, pipelines, and model sizes.
""")
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(
label="Metric",
choices=["downloads", "likes"],
value="downloads"
)
filter_choice_radio = gr.Radio(
label="Filter by",
choices=["None", "Tag Filter", "Pipeline Filter"],
value="None"
)
tag_filter_dropdown = gr.Dropdown(
label="Select Tag",
choices=list(TAG_FILTER_FUNCS.keys()),
value=None,
visible=False
)
pipeline_filter_dropdown = gr.Dropdown(
label="Select Pipeline Tag",
choices=PIPELINE_TAGS,
value=None,
visible=False
)
size_filter_dropdown = gr.Dropdown(
label="Model Size Filter",
choices=["None"] + list(MODEL_SIZE_RANGES.keys()),
value="None"
)
generate_plot_button = gr.Button("Generate Plot")
with gr.Column(scale=3):
plot_output = gr.Plot()
def generate_plot_on_click(count_by, filter_choice, tag_filter, pipeline_filter, size_filter, data):
print(f"Generating plot with: Metric={count_by}, Filter={filter_choice}, Tag={tag_filter}, Pipeline={pipeline_filter}, Size={size_filter}")
if data is None:
print("Error: Data not loaded yet.")
return None
selected_tag_filter = None
selected_pipeline_filter = None
selected_size_filter = None
if filter_choice == "Tag Filter":
selected_tag_filter = tag_filter
elif filter_choice == "Pipeline Filter":
selected_pipeline_filter = pipeline_filter
if size_filter != "None":
selected_size_filter = size_filter
fig = make_figure(
count_by=count_by,
org_stats=data,
tag_filter=selected_tag_filter,
pipeline_filter=selected_pipeline_filter,
size_range=selected_size_filter
)
return fig
def update_filter_visibility(filter_choice):
if filter_choice == "Tag Filter":
return gr.update(visible=True), gr.update(visible=False)
elif filter_choice == "Pipeline Filter":
return gr.update(visible=False), gr.update(visible=True)
else: # "None"
return gr.update(visible=False), gr.update(visible=False)
filter_choice_radio.change(
fn=update_filter_visibility,
inputs=[filter_choice_radio],
outputs=[tag_filter_dropdown, pipeline_filter_dropdown]
)
# Load data once at startup
demo.load(
fn=download_and_process_models,
inputs=[],
outputs=[models_data]
)
# Button click event to generate plot
generate_plot_button.click(
fn=generate_plot_on_click,
inputs=[
count_by_dropdown,
filter_choice_radio,
tag_filter_dropdown,
pipeline_filter_dropdown,
size_filter_dropdown,
models_data
],
outputs=[plot_output]
)
if __name__ == "__main__":
demo.launch()