File size: 14,942 Bytes
bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 caa5704 bbf45d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
import json
import gradio as gr
import pandas as pd
import plotly.express as px
import pyarrow.parquet as pq
import os
import requests
from io import BytesIO
import math
# Define pipeline tags (keeping the same ones from the provided code)
PIPELINE_TAGS = [
'text-generation',
'text-to-image',
'text-classification',
'text2text-generation',
'audio-to-audio',
'feature-extraction',
'image-classification',
'translation',
'reinforcement-learning',
'fill-mask',
'text-to-speech',
'automatic-speech-recognition',
'image-text-to-text',
'token-classification',
'sentence-similarity',
'question-answering',
'image-feature-extraction',
'summarization',
'zero-shot-image-classification',
'object-detection',
'image-segmentation',
'image-to-image',
'image-to-text',
'audio-classification',
'visual-question-answering',
'text-to-video',
'zero-shot-classification',
'depth-estimation',
'text-ranking',
'image-to-video',
'multiple-choice',
'unconditional-image-generation',
'video-classification',
'text-to-audio',
'time-series-forecasting',
'any-to-any',
'video-text-to-text',
'table-question-answering',
]
# Model size categories in GB
MODEL_SIZE_RANGES = {
"Small (<1GB)": (0, 1),
"Medium (1-5GB)": (1, 5),
"Large (5-20GB)": (5, 20),
"X-Large (20-50GB)": (20, 50),
"XX-Large (>50GB)": (50, float('inf'))
}
# Filter functions for tags - keeping the same from provided code
def is_audio_speech(repo_dct):
res = (repo_dct.get("pipeline_tag", None) and "audio" in repo_dct.get("pipeline_tag", "").lower()) or \
(repo_dct.get("pipeline_tag", None) and "speech" in repo_dct.get("pipeline_tag", "").lower()) or \
(repo_dct.get("tags", None) and any("audio" in tag.lower() for tag in repo_dct.get("tags", []))) or \
(repo_dct.get("tags", None) and any("speech" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_music(repo_dct):
res = (repo_dct.get("tags", None) and any("music" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_robotics(repo_dct):
res = (repo_dct.get("tags", None) and any("robot" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_biomed(repo_dct):
res = (repo_dct.get("tags", None) and any("bio" in tag.lower() for tag in repo_dct.get("tags", []))) or \
(repo_dct.get("tags", None) and any("medic" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_timeseries(repo_dct):
res = (repo_dct.get("tags", None) and any("series" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_science(repo_dct):
res = (repo_dct.get("tags", None) and any("science" in tag.lower() and not "bigscience" in tag for tag in repo_dct.get("tags", [])))
return res
def is_video(repo_dct):
res = (repo_dct.get("tags", None) and any("video" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_image(repo_dct):
res = (repo_dct.get("tags", None) and any("image" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_text(repo_dct):
res = (repo_dct.get("tags", None) and any("text" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
# Add model size filter function
def is_in_size_range(repo_dct, size_range):
if size_range is None:
return True
min_size, max_size = MODEL_SIZE_RANGES[size_range]
# Get model size in GB from safetensors total (if available)
if repo_dct.get("safetensors") and repo_dct["safetensors"].get("total"):
# Convert bytes to GB
size_gb = repo_dct["safetensors"]["total"] / (1024 * 1024 * 1024)
return min_size <= size_gb < max_size
return False
TAG_FILTER_FUNCS = {
"Audio & Speech": is_audio_speech,
"Time series": is_timeseries,
"Robotics": is_robotics,
"Music": is_music,
"Video": is_video,
"Images": is_image,
"Text": is_text,
"Biomedical": is_biomed,
"Sciences": is_science,
}
def make_org_stats(count_by, org_stats, top_k=20, filter_func=None, size_range=None):
assert count_by in ["likes", "downloads"]
# Apply both filter_func and size_range if provided
def combined_filter(dct):
passes_tag_filter = filter_func(dct) if filter_func else True
passes_size_filter = is_in_size_range(dct, size_range) if size_range else True
return passes_tag_filter and passes_size_filter
# Sort organizations by total count
sorted_stats = sorted(
[(
org_id,
sum(model[count_by] for model in models if combined_filter(model))
) for org_id, models in org_stats.items()],
key=lambda x: x[1],
reverse=True,
)
# Top organizations + Others category
res = sorted_stats[:top_k] + [("Others...", sum(st for auth, st in sorted_stats[top_k:]))]
total_st = sum(st for o, st in res)
# Prepare data for treemap
res_plot_df = []
for org, st in res:
if org == "Others...":
res_plot_df += [("Others...", "other", st * 100 / total_st if total_st > 0 else 0)]
else:
for model in org_stats[org]:
if combined_filter(model):
res_plot_df += [(org, model["id"], model[count_by] * 100 / total_st if total_st > 0 else 0)]
return ([(o, 100 * st / total_st if total_st > 0 else 0) for o, st in res if st > 0], res_plot_df)
def make_figure(count_by, org_stats, tag_filter=None, pipeline_filter=None, size_range=None):
assert count_by in ["downloads", "likes"]
# Determine which filter function to use
filter_func = None
if tag_filter:
filter_func = TAG_FILTER_FUNCS[tag_filter]
elif pipeline_filter:
filter_func = lambda dct: dct.get("pipeline_tag", None) and dct.get("pipeline_tag", "") == pipeline_filter
else:
filter_func = lambda dct: True
# Generate stats with filters
_, res_plot_df = make_org_stats(count_by, org_stats, top_k=25, filter_func=filter_func, size_range=size_range)
# Create DataFrame for Plotly
df = pd.DataFrame(
dict(
organizations=[o for o, _, _ in res_plot_df],
model=[r for _, r, _ in res_plot_df],
stats=[s for _, _, s in res_plot_df],
)
)
df["models"] = "models" # Root node
# Create treemap
fig = px.treemap(df, path=["models", 'organizations', 'model'], values='stats',
title=f"HuggingFace Models - {count_by.capitalize()} by Organization")
fig.update_layout(
margin=dict(t=50, l=25, r=25, b=25)
)
return fig
def download_and_process_models():
"""Download and process the models data from HuggingFace dataset"""
try:
# Create a cache directory
if not os.path.exists('data'):
os.makedirs('data')
# Check if we have cached data
if os.path.exists('data/processed_models.json'):
print("Loading from cache...")
with open('data/processed_models.json', 'r') as f:
return json.load(f)
# URL to the models.parquet file
url = "https://huggingface.co/datasets/cfahlgren1/hub-stats/resolve/main/models.parquet"
print(f"Downloading models data from {url}...")
response = requests.get(url)
if response.status_code != 200:
raise Exception(f"Failed to download data: HTTP {response.status_code}")
# Read the parquet file
table = pq.read_table(BytesIO(response.content))
df = table.to_pandas()
print(f"Downloaded {len(df)} models")
# Process the dataframe into the organization structure we need
org_stats = {}
for _, row in df.iterrows():
model_id = row['id']
# Extract the organization part of the model ID
if '/' in model_id:
org_id = model_id.split('/')[0]
else:
org_id = "unaffiliated"
# Create model entry with needed fields
model_entry = {
"id": model_id,
"downloads": row.get('downloads', 0),
"likes": row.get('likes', 0),
"pipeline_tag": row.get('pipeline_tag'),
"tags": row.get('tags', []),
}
# Add safetensors information if available
if 'safetensors' in row and row['safetensors']:
if isinstance(row['safetensors'], dict) and 'total' in row['safetensors']:
model_entry["safetensors"] = {"total": row['safetensors']['total']}
elif isinstance(row['safetensors'], str):
# Try to parse JSON string
try:
safetensors = json.loads(row['safetensors'])
if isinstance(safetensors, dict) and 'total' in safetensors:
model_entry["safetensors"] = {"total": safetensors['total']}
except:
pass
# Add to organization stats
if org_id not in org_stats:
org_stats[org_id] = []
org_stats[org_id].append(model_entry)
# Cache the processed data
with open('data/processed_models.json', 'w') as f:
json.dump(org_stats, f)
return org_stats
except Exception as e:
print(f"Error downloading or processing data: {e}")
# Return sample data for testing if real data unavailable
return create_sample_data()
def create_sample_data():
"""Create sample data for testing when real data is unavailable"""
print("Creating sample data for testing...")
sample_orgs = ['openai', 'meta', 'google', 'microsoft', 'anthropic', 'stability', 'huggingface']
org_stats = {}
for org in sample_orgs:
org_stats[org] = []
num_models = 5 # Each org has 5 sample models
for i in range(num_models):
model_id = f"{org}/model-{i+1}"
# Random pipeline tag
pipeline_idx = i % len(PIPELINE_TAGS)
pipeline_tag = PIPELINE_TAGS[pipeline_idx]
# Random tags
tags = [pipeline_tag, "sample-data"]
# Random downloads and likes
downloads = int(1000 * (10 ** (org_stats.keys().index(org) % 3))) # Different magnitudes
likes = int(downloads * 0.05) # 5% like rate
# Random model size in bytes (from 100MB to 100GB)
model_size = (10**8) * (10 ** (i % 3)) # Different magnitudes
org_stats[org].append({
"id": model_id,
"downloads": downloads,
"likes": likes,
"pipeline_tag": pipeline_tag,
"tags": tags,
"safetensors": {"total": model_size}
})
return org_stats
# Create Gradio interface
with gr.Blocks() as demo:
models_data = gr.State(value=None) # To store loaded data
with gr.Row():
gr.Markdown("""
## HuggingFace Models TreeMap
This app shows how different organizations contribute to the HuggingFace ecosystem with their models.
Use the filters to explore models by different metrics, tags, pipelines, and model sizes.
""")
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(
label="Metric",
choices=["downloads", "likes"],
value="downloads"
)
filter_choice_radio = gr.Radio(
label="Filter by",
choices=["None", "Tag Filter", "Pipeline Filter"],
value="None"
)
tag_filter_dropdown = gr.Dropdown(
label="Select Tag",
choices=list(TAG_FILTER_FUNCS.keys()),
value=None,
visible=False
)
pipeline_filter_dropdown = gr.Dropdown(
label="Select Pipeline Tag",
choices=PIPELINE_TAGS,
value=None,
visible=False
)
size_filter_dropdown = gr.Dropdown(
label="Model Size Filter",
choices=["None"] + list(MODEL_SIZE_RANGES.keys()),
value="None"
)
generate_plot_button = gr.Button("Generate Plot")
with gr.Column(scale=3):
plot_output = gr.Plot()
def generate_plot_on_click(count_by, filter_choice, tag_filter, pipeline_filter, size_filter, data):
print(f"Generating plot with: Metric={count_by}, Filter={filter_choice}, Tag={tag_filter}, Pipeline={pipeline_filter}, Size={size_filter}")
if data is None:
print("Error: Data not loaded yet.")
return None
selected_tag_filter = None
selected_pipeline_filter = None
selected_size_filter = None
if filter_choice == "Tag Filter":
selected_tag_filter = tag_filter
elif filter_choice == "Pipeline Filter":
selected_pipeline_filter = pipeline_filter
if size_filter != "None":
selected_size_filter = size_filter
fig = make_figure(
count_by=count_by,
org_stats=data,
tag_filter=selected_tag_filter,
pipeline_filter=selected_pipeline_filter,
size_range=selected_size_filter
)
return fig
def update_filter_visibility(filter_choice):
if filter_choice == "Tag Filter":
return gr.update(visible=True), gr.update(visible=False)
elif filter_choice == "Pipeline Filter":
return gr.update(visible=False), gr.update(visible=True)
else: # "None"
return gr.update(visible=False), gr.update(visible=False)
filter_choice_radio.change(
fn=update_filter_visibility,
inputs=[filter_choice_radio],
outputs=[tag_filter_dropdown, pipeline_filter_dropdown]
)
# Load data once at startup
demo.load(
fn=download_and_process_models,
inputs=[],
outputs=[models_data]
)
# Button click event to generate plot
generate_plot_button.click(
fn=generate_plot_on_click,
inputs=[
count_by_dropdown,
filter_choice_radio,
tag_filter_dropdown,
pipeline_filter_dropdown,
size_filter_dropdown,
models_data
],
outputs=[plot_output]
)
if __name__ == "__main__":
demo.launch() |