ModelVerse / app.py
evijit's picture
evijit HF Staff
Update app.py
47e0cf9 verified
raw
history blame
17.7 kB
# --- START OF FIXED FILE app.py ---
import gradio as gr
import pandas as pd
import plotly.express as px
import time
import json
from datasets import load_dataset
# --- Constants ---
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
PARAM_CHOICES_DEFAULT_INDICES_JSON = json.dumps([0, len(PARAM_CHOICES) - 1])
TOP_K_CHOICES = list(range(5, 51, 5))
HF_DATASET_ID = "evijit/orgstats_daily_data"
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]
def load_models_data():
overall_start_time = time.time()
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
try:
dataset_dict = load_dataset(HF_DATASET_ID)
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
if 'params' in df.columns:
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0)
else:
df['params'] = 0
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
print(msg)
return df, True, msg
except Exception as e:
err_msg = f"Failed to load dataset. Error: {e}"
print(err_msg)
return pd.DataFrame(), False, err_msg
def get_param_range_values(param_range_labels):
min_label, max_label = param_range_labels
min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
return min_val, max_val
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None):
if df is None or df.empty: return pd.DataFrame()
filtered_df = df.copy()
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns:
filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
if pipeline_filter and "pipeline_tag" in filtered_df.columns:
filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
if param_range:
min_params, max_params = get_param_range_values(param_range)
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
if not is_default_range and 'params' in filtered_df.columns:
if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns:
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
if filtered_df.empty: return pd.DataFrame()
if count_by not in filtered_df.columns: filtered_df[count_by] = 0.0
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors='coerce').fillna(0.0)
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
top_orgs_list = org_totals.index.tolist()
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
treemap_data["root"] = "models"
return treemap_data
def create_treemap(treemap_data, count_by, title=None):
if treemap_data.empty:
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
return fig
fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
return fig
# Custom head with noUiSlider CSS and JS
custom_head = """
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/15.7.1/nouislider.min.css">
<script src="https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/15.7.1/nouislider.min.js"></script>
"""
# JavaScript for creating the slider - this will be injected properly
def create_slider_js():
return f"""
function initializeSlider() {{
const paramChoices = {json.dumps(PARAM_CHOICES)};
const sliderContainer = document.getElementById('param-slider');
const hiddenInput = document.querySelector('#param-range-hidden input');
if (!sliderContainer || !hiddenInput) {{
console.log('Slider elements not found, retrying...');
setTimeout(initializeSlider, 100);
return;
}}
// Clear any existing slider
if (sliderContainer.noUiSlider) {{
sliderContainer.noUiSlider.destroy();
}}
// Create the slider
noUiSlider.create(sliderContainer, {{
start: [0, paramChoices.length - 1],
connect: true,
step: 1,
range: {{
'min': 0,
'max': paramChoices.length - 1
}},
pips: {{
mode: 'values',
values: Array.from({{length: paramChoices.length}}, (_, i) => i),
density: 100 / (paramChoices.length - 1),
format: {{
to: function(value) {{
return paramChoices[Math.round(value)];
}}
}}
}}
}});
// Update hidden input when slider changes
sliderContainer.noUiSlider.on('update', function(values) {{
const indices = values.map(v => Math.round(parseFloat(v)));
hiddenInput.value = JSON.stringify(indices);
hiddenInput.dispatchEvent(new Event('input', {{ bubbles: true }}));
// Highlight selected range
document.querySelectorAll('.noUi-value').forEach((pip, index) => {{
const isSelected = index >= indices[0] && index <= indices[1];
pip.style.fontWeight = isSelected ? 'bold' : 'normal';
pip.style.color = isSelected ? '#2563eb' : '#6b7280';
}});
}});
// Initial highlight
document.querySelectorAll('.noUi-value').forEach((pip, index) => {{
const isSelected = index >= 0 && index <= paramChoices.length - 1;
pip.style.fontWeight = isSelected ? 'bold' : 'normal';
pip.style.color = isSelected ? '#2563eb' : '#6b7280';
}});
console.log('Slider initialized successfully');
}}
// Initialize when DOM is ready
if (document.readyState === 'loading') {{
document.addEventListener('DOMContentLoaded', initializeSlider);
}} else {{
initializeSlider();
}}
"""
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, head=custom_head) as demo:
models_data_state = gr.State(pd.DataFrame())
loading_complete_state = gr.State(False)
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(
label="Metric",
choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")],
value="downloads"
)
filter_choice_radio = gr.Radio(
label="Filter Type",
choices=["None", "Tag Filter", "Pipeline Filter"],
value="None"
)
tag_filter_dropdown = gr.Dropdown(
label="Select Tag",
choices=TAG_FILTER_CHOICES,
value=None,
visible=False
)
pipeline_filter_dropdown = gr.Dropdown(
label="Select Pipeline Tag",
choices=PIPELINE_TAGS,
value=None,
visible=False
)
# Parameter range slider section
with gr.Group():
gr.Markdown("### Parameters")
# Custom HTML for the slider
gr.HTML(f"""
<div id="param-slider" style="margin: 20px 10px 60px 10px; height: 20px;"></div>
<style>
#param-slider {{
height: 20px;
}}
.noUi-target {{
background: #f1f5f9;
border-radius: 10px;
border: 1px solid #e2e8f0;
box-shadow: none;
}}
.noUi-connect {{
background: #3b82f6;
border-radius: 10px;
}}
.noUi-handle {{
width: 20px;
height: 20px;
right: -10px;
top: -5px;
background: white;
border: 2px solid #3b82f6;
border-radius: 50%;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
cursor: pointer;
}}
.noUi-handle:before,
.noUi-handle:after {{
display: none;
}}
.noUi-handle:focus {{
outline: none;
}}
.noUi-pips {{
color: #6b7280;
font-size: 12px;
}}
.noUi-pips-horizontal {{
padding: 10px 0;
height: 60px;
}}
.noUi-value {{
font-size: 11px;
padding-top: 5px;
cursor: pointer;
}}
.noUi-marker-horizontal.noUi-marker {{
background: #e2e8f0;
height: 5px;
width: 1px;
}}
</style>
""")
# Hidden input to store slider values
param_range_hidden = gr.Textbox(
value=PARAM_CHOICES_DEFAULT_INDICES_JSON,
visible=False,
elem_id="param-range-hidden"
)
top_k_dropdown = gr.Dropdown(
label="Number of Top Organizations",
choices=TOP_K_CHOICES,
value=25
)
skip_orgs_textbox = gr.Textbox(
label="Organizations to Skip (comma-separated)",
value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski"
)
generate_plot_button = gr.Button(
value="Generate Plot",
variant="primary",
interactive=False
)
with gr.Column(scale=3):
plot_output = gr.Plot()
status_message_md = gr.Markdown("Initializing...")
data_info_md = gr.Markdown("")
# Event handlers
def _update_button_interactivity(is_loaded_flag):
return gr.update(interactive=is_loaded_flag)
loading_complete_state.change(
fn=_update_button_interactivity,
inputs=loading_complete_state,
outputs=generate_plot_button
)
def _toggle_filters_visibility(choice):
return (
gr.update(visible=choice == "Tag Filter"),
gr.update(visible=choice == "Pipeline Filter")
)
filter_choice_radio.change(
fn=_toggle_filters_visibility,
inputs=filter_choice_radio,
outputs=[tag_filter_dropdown, pipeline_filter_dropdown]
)
def ui_load_data_controller(progress=gr.Progress()):
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...")
try:
current_df, load_success_flag, status_msg_from_load = load_models_data()
if load_success_flag:
progress(0.9, desc="Processing data...")
date_display = "Pre-processed (date unavailable)"
if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]):
ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True)
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0
data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with parameter counts: {param_count:,}\n- Data as of: {date_display}\n"
status_msg_ui = "Data loaded. Ready to generate plot."
else:
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
status_msg_ui = status_msg_from_load
except Exception as e:
status_msg_ui = f"An unexpected error occurred: {str(e)}"
data_info_text = f"### Critical Error\n- {status_msg_ui}"
load_success_flag = False
print(f"Critical error in ui_load_data_controller: {e}")
return current_df, load_success_flag, data_info_text, status_msg_ui
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
param_range_json, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
if df_current_models is None or df_current_models.empty:
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
progress(0.1, desc="Preparing data...")
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
try:
param_range_indices = json.loads(param_range_json)
except:
param_range_indices = [0, len(PARAM_CHOICES) - 1]
min_label = PARAM_CHOICES[int(param_range_indices[0])]
max_label = PARAM_CHOICES[int(param_range_indices[1])]
param_labels_for_filtering = [min_label, max_label]
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_labels_for_filtering, orgs_to_skip)
progress(0.7, desc="Generating plot...")
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
if treemap_df.empty:
plot_stats_md = "No data matches the selected filters. Please try different options."
else:
total_items_in_plot = len(treemap_df['id'].unique())
total_value_in_plot = treemap_df[metric_choice].sum()
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
return plotly_fig, plot_stats_md
# Load data on startup and initialize slider
demo.load(
fn=ui_load_data_controller,
inputs=[],
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
)
# Initialize slider after page loads
demo.load(
fn=lambda: None,
inputs=[],
outputs=[],
js=create_slider_js()
)
# Generate plot button click handler
generate_plot_button.click(
fn=ui_generate_plot_controller,
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
param_range_hidden, top_k_dropdown, skip_orgs_textbox, models_data_state],
outputs=[plot_output, status_message_md]
)
if __name__ == "__main__":
print(f"Application starting...")
demo.queue().launch()
# --- END OF FIXED FILE