Spaces:
Running
Running
# --- START OF FIXED FILE app.py --- | |
import gradio as gr | |
import pandas as pd | |
import plotly.express as px | |
import time | |
import json | |
from datasets import load_dataset | |
# --- Constants --- | |
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B'] | |
PARAM_CHOICES_DEFAULT_INDICES_JSON = json.dumps([0, len(PARAM_CHOICES) - 1]) | |
TOP_K_CHOICES = list(range(5, 51, 5)) | |
HF_DATASET_ID = "evijit/orgstats_daily_data" | |
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ] | |
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ] | |
def load_models_data(): | |
overall_start_time = time.time() | |
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}") | |
try: | |
dataset_dict = load_dataset(HF_DATASET_ID) | |
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas() | |
if 'params' in df.columns: | |
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0) | |
else: | |
df['params'] = 0 | |
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s." | |
print(msg) | |
return df, True, msg | |
except Exception as e: | |
err_msg = f"Failed to load dataset. Error: {e}" | |
print(err_msg) | |
return pd.DataFrame(), False, err_msg | |
def get_param_range_values(param_range_labels): | |
min_label, max_label = param_range_labels | |
min_val = 0.0 if '<' in min_label else float(min_label.replace('B', '')) | |
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', '')) | |
return min_val, max_val | |
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None): | |
if df is None or df.empty: return pd.DataFrame() | |
filtered_df = df.copy() | |
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" } | |
if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns: | |
filtered_df = filtered_df[filtered_df[col_map[tag_filter]]] | |
if pipeline_filter and "pipeline_tag" in filtered_df.columns: | |
filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter] | |
if param_range: | |
min_params, max_params = get_param_range_values(param_range) | |
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1]) | |
if not is_default_range and 'params' in filtered_df.columns: | |
if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params] | |
if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params] | |
if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns: | |
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)] | |
if filtered_df.empty: return pd.DataFrame() | |
if count_by not in filtered_df.columns: filtered_df[count_by] = 0.0 | |
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors='coerce').fillna(0.0) | |
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first') | |
top_orgs_list = org_totals.index.tolist() | |
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy() | |
treemap_data["root"] = "models" | |
return treemap_data | |
def create_treemap(treemap_data, count_by, title=None): | |
if treemap_data.empty: | |
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1]) | |
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25)) | |
return fig | |
fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly) | |
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25)) | |
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>") | |
return fig | |
# Custom head with noUiSlider CSS and JS | |
custom_head = """ | |
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/15.7.1/nouislider.min.css"> | |
<script src="https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/15.7.1/nouislider.min.js"></script> | |
""" | |
# JavaScript for creating the slider - this will be injected properly | |
def create_slider_js(): | |
return f""" | |
function initializeSlider() {{ | |
const paramChoices = {json.dumps(PARAM_CHOICES)}; | |
const sliderContainer = document.getElementById('param-slider'); | |
const hiddenInput = document.querySelector('#param-range-hidden input'); | |
if (!sliderContainer || !hiddenInput) {{ | |
console.log('Slider elements not found, retrying...'); | |
setTimeout(initializeSlider, 100); | |
return; | |
}} | |
// Clear any existing slider | |
if (sliderContainer.noUiSlider) {{ | |
sliderContainer.noUiSlider.destroy(); | |
}} | |
// Create the slider | |
noUiSlider.create(sliderContainer, {{ | |
start: [0, paramChoices.length - 1], | |
connect: true, | |
step: 1, | |
range: {{ | |
'min': 0, | |
'max': paramChoices.length - 1 | |
}}, | |
pips: {{ | |
mode: 'values', | |
values: Array.from({{length: paramChoices.length}}, (_, i) => i), | |
density: 100 / (paramChoices.length - 1), | |
format: {{ | |
to: function(value) {{ | |
return paramChoices[Math.round(value)]; | |
}} | |
}} | |
}} | |
}}); | |
// Update hidden input when slider changes | |
sliderContainer.noUiSlider.on('update', function(values) {{ | |
const indices = values.map(v => Math.round(parseFloat(v))); | |
hiddenInput.value = JSON.stringify(indices); | |
hiddenInput.dispatchEvent(new Event('input', {{ bubbles: true }})); | |
// Highlight selected range | |
document.querySelectorAll('.noUi-value').forEach((pip, index) => {{ | |
const isSelected = index >= indices[0] && index <= indices[1]; | |
pip.style.fontWeight = isSelected ? 'bold' : 'normal'; | |
pip.style.color = isSelected ? '#2563eb' : '#6b7280'; | |
}}); | |
}}); | |
// Initial highlight | |
document.querySelectorAll('.noUi-value').forEach((pip, index) => {{ | |
const isSelected = index >= 0 && index <= paramChoices.length - 1; | |
pip.style.fontWeight = isSelected ? 'bold' : 'normal'; | |
pip.style.color = isSelected ? '#2563eb' : '#6b7280'; | |
}}); | |
console.log('Slider initialized successfully'); | |
}} | |
// Initialize when DOM is ready | |
if (document.readyState === 'loading') {{ | |
document.addEventListener('DOMContentLoaded', initializeSlider); | |
}} else {{ | |
initializeSlider(); | |
}} | |
""" | |
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, head=custom_head) as demo: | |
models_data_state = gr.State(pd.DataFrame()) | |
loading_complete_state = gr.State(False) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
count_by_dropdown = gr.Dropdown( | |
label="Metric", | |
choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], | |
value="downloads" | |
) | |
filter_choice_radio = gr.Radio( | |
label="Filter Type", | |
choices=["None", "Tag Filter", "Pipeline Filter"], | |
value="None" | |
) | |
tag_filter_dropdown = gr.Dropdown( | |
label="Select Tag", | |
choices=TAG_FILTER_CHOICES, | |
value=None, | |
visible=False | |
) | |
pipeline_filter_dropdown = gr.Dropdown( | |
label="Select Pipeline Tag", | |
choices=PIPELINE_TAGS, | |
value=None, | |
visible=False | |
) | |
# Parameter range slider section | |
with gr.Group(): | |
gr.Markdown("### Parameters") | |
# Custom HTML for the slider | |
gr.HTML(f""" | |
<div id="param-slider" style="margin: 20px 10px 60px 10px; height: 20px;"></div> | |
<style> | |
#param-slider {{ | |
height: 20px; | |
}} | |
.noUi-target {{ | |
background: #f1f5f9; | |
border-radius: 10px; | |
border: 1px solid #e2e8f0; | |
box-shadow: none; | |
}} | |
.noUi-connect {{ | |
background: #3b82f6; | |
border-radius: 10px; | |
}} | |
.noUi-handle {{ | |
width: 20px; | |
height: 20px; | |
right: -10px; | |
top: -5px; | |
background: white; | |
border: 2px solid #3b82f6; | |
border-radius: 50%; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
cursor: pointer; | |
}} | |
.noUi-handle:before, | |
.noUi-handle:after {{ | |
display: none; | |
}} | |
.noUi-handle:focus {{ | |
outline: none; | |
}} | |
.noUi-pips {{ | |
color: #6b7280; | |
font-size: 12px; | |
}} | |
.noUi-pips-horizontal {{ | |
padding: 10px 0; | |
height: 60px; | |
}} | |
.noUi-value {{ | |
font-size: 11px; | |
padding-top: 5px; | |
cursor: pointer; | |
}} | |
.noUi-marker-horizontal.noUi-marker {{ | |
background: #e2e8f0; | |
height: 5px; | |
width: 1px; | |
}} | |
</style> | |
""") | |
# Hidden input to store slider values | |
param_range_hidden = gr.Textbox( | |
value=PARAM_CHOICES_DEFAULT_INDICES_JSON, | |
visible=False, | |
elem_id="param-range-hidden" | |
) | |
top_k_dropdown = gr.Dropdown( | |
label="Number of Top Organizations", | |
choices=TOP_K_CHOICES, | |
value=25 | |
) | |
skip_orgs_textbox = gr.Textbox( | |
label="Organizations to Skip (comma-separated)", | |
value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski" | |
) | |
generate_plot_button = gr.Button( | |
value="Generate Plot", | |
variant="primary", | |
interactive=False | |
) | |
with gr.Column(scale=3): | |
plot_output = gr.Plot() | |
status_message_md = gr.Markdown("Initializing...") | |
data_info_md = gr.Markdown("") | |
# Event handlers | |
def _update_button_interactivity(is_loaded_flag): | |
return gr.update(interactive=is_loaded_flag) | |
loading_complete_state.change( | |
fn=_update_button_interactivity, | |
inputs=loading_complete_state, | |
outputs=generate_plot_button | |
) | |
def _toggle_filters_visibility(choice): | |
return ( | |
gr.update(visible=choice == "Tag Filter"), | |
gr.update(visible=choice == "Pipeline Filter") | |
) | |
filter_choice_radio.change( | |
fn=_toggle_filters_visibility, | |
inputs=filter_choice_radio, | |
outputs=[tag_filter_dropdown, pipeline_filter_dropdown] | |
) | |
def ui_load_data_controller(progress=gr.Progress()): | |
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...") | |
try: | |
current_df, load_success_flag, status_msg_from_load = load_models_data() | |
if load_success_flag: | |
progress(0.9, desc="Processing data...") | |
date_display = "Pre-processed (date unavailable)" | |
if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]): | |
ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True) | |
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z') | |
param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0 | |
data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with parameter counts: {param_count:,}\n- Data as of: {date_display}\n" | |
status_msg_ui = "Data loaded. Ready to generate plot." | |
else: | |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}" | |
status_msg_ui = status_msg_from_load | |
except Exception as e: | |
status_msg_ui = f"An unexpected error occurred: {str(e)}" | |
data_info_text = f"### Critical Error\n- {status_msg_ui}" | |
load_success_flag = False | |
print(f"Critical error in ui_load_data_controller: {e}") | |
return current_df, load_success_flag, data_info_text, status_msg_ui | |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice, | |
param_range_json, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()): | |
if df_current_models is None or df_current_models.empty: | |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded." | |
progress(0.1, desc="Preparing data...") | |
tag_to_use = tag_choice if filter_type == "Tag Filter" else None | |
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None | |
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] | |
try: | |
param_range_indices = json.loads(param_range_json) | |
except: | |
param_range_indices = [0, len(PARAM_CHOICES) - 1] | |
min_label = PARAM_CHOICES[int(param_range_indices[0])] | |
max_label = PARAM_CHOICES[int(param_range_indices[1])] | |
param_labels_for_filtering = [min_label, max_label] | |
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_labels_for_filtering, orgs_to_skip) | |
progress(0.7, desc="Generating plot...") | |
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"} | |
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization" | |
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title) | |
if treemap_df.empty: | |
plot_stats_md = "No data matches the selected filters. Please try different options." | |
else: | |
total_items_in_plot = len(treemap_df['id'].unique()) | |
total_value_in_plot = treemap_df[metric_choice].sum() | |
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}" | |
return plotly_fig, plot_stats_md | |
# Load data on startup and initialize slider | |
demo.load( | |
fn=ui_load_data_controller, | |
inputs=[], | |
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md] | |
) | |
# Initialize slider after page loads | |
demo.load( | |
fn=lambda: None, | |
inputs=[], | |
outputs=[], | |
js=create_slider_js() | |
) | |
# Generate plot button click handler | |
generate_plot_button.click( | |
fn=ui_generate_plot_controller, | |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown, | |
param_range_hidden, top_k_dropdown, skip_orgs_textbox, models_data_state], | |
outputs=[plot_output, status_message_md] | |
) | |
if __name__ == "__main__": | |
print(f"Application starting...") | |
demo.queue().launch() | |
# --- END OF FIXED FILE |