Spaces:
Running
Running
File size: 17,712 Bytes
47e0cf9 f0e2fd8 bbf45d0 961c6fe d858aa5 b06975a 961c6fe 97da54a d858aa5 afd7356 b06975a afd7356 4517d15 961c6fe afd7356 961c6fe afd7356 d858aa5 97da54a f0e2fd8 97da54a d858aa5 afd7356 d858aa5 afd7356 961c6fe 97da54a 961c6fe 97da54a 961c6fe 9c451ee 4517d15 b06975a 97da54a 4517d15 97da54a 4517d15 b06975a 961c6fe b06975a 0c6bf95 f0e2fd8 961c6fe f0e2fd8 9c451ee f0e2fd8 961c6fe 9c451ee 4517d15 961c6fe bbf45d0 47e0cf9 d858aa5 47e0cf9 d858aa5 961c6fe f0e2fd8 d858aa5 98b7de8 f0e2fd8 47e0cf9 97da54a 47e0cf9 97da54a 47e0cf9 d858aa5 47e0cf9 d858aa5 47e0cf9 b06975a 47e0cf9 afd7356 f0e2fd8 961c6fe f0e2fd8 961c6fe 47e0cf9 961c6fe 47e0cf9 961c6fe afd7356 b06975a 961c6fe afd7356 961c6fe b06975a fa2c2d2 b06975a fa2c2d2 97da54a 4517d15 b06975a 4517d15 961c6fe 4517d15 961c6fe d858aa5 961c6fe b06975a f0e2fd8 961c6fe 4d0811f 961c6fe d858aa5 961c6fe b06975a d858aa5 b06975a 961c6fe b06975a f0e2fd8 47e0cf9 4517d15 9c451ee b06975a 961c6fe afd7356 961c6fe b06975a 961c6fe f0e2fd8 d858aa5 4517d15 961c6fe 47e0cf9 0c6bf95 47e0cf9 0c6bf95 afd7356 47e0cf9 bbf45d0 961c6fe 47e0cf9 f0e2fd8 bbf45d0 d858aa5 afd7356 f0e2fd8 47e0cf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# --- START OF FIXED FILE app.py ---
import gradio as gr
import pandas as pd
import plotly.express as px
import time
import json
from datasets import load_dataset
# --- Constants ---
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
PARAM_CHOICES_DEFAULT_INDICES_JSON = json.dumps([0, len(PARAM_CHOICES) - 1])
TOP_K_CHOICES = list(range(5, 51, 5))
HF_DATASET_ID = "evijit/orgstats_daily_data"
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]
def load_models_data():
overall_start_time = time.time()
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
try:
dataset_dict = load_dataset(HF_DATASET_ID)
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
if 'params' in df.columns:
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0)
else:
df['params'] = 0
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
print(msg)
return df, True, msg
except Exception as e:
err_msg = f"Failed to load dataset. Error: {e}"
print(err_msg)
return pd.DataFrame(), False, err_msg
def get_param_range_values(param_range_labels):
min_label, max_label = param_range_labels
min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
return min_val, max_val
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None):
if df is None or df.empty: return pd.DataFrame()
filtered_df = df.copy()
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns:
filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
if pipeline_filter and "pipeline_tag" in filtered_df.columns:
filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
if param_range:
min_params, max_params = get_param_range_values(param_range)
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
if not is_default_range and 'params' in filtered_df.columns:
if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns:
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
if filtered_df.empty: return pd.DataFrame()
if count_by not in filtered_df.columns: filtered_df[count_by] = 0.0
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors='coerce').fillna(0.0)
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
top_orgs_list = org_totals.index.tolist()
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
treemap_data["root"] = "models"
return treemap_data
def create_treemap(treemap_data, count_by, title=None):
if treemap_data.empty:
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
return fig
fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
return fig
# Custom head with noUiSlider CSS and JS
custom_head = """
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/15.7.1/nouislider.min.css">
<script src="https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/15.7.1/nouislider.min.js"></script>
"""
# JavaScript for creating the slider - this will be injected properly
def create_slider_js():
return f"""
function initializeSlider() {{
const paramChoices = {json.dumps(PARAM_CHOICES)};
const sliderContainer = document.getElementById('param-slider');
const hiddenInput = document.querySelector('#param-range-hidden input');
if (!sliderContainer || !hiddenInput) {{
console.log('Slider elements not found, retrying...');
setTimeout(initializeSlider, 100);
return;
}}
// Clear any existing slider
if (sliderContainer.noUiSlider) {{
sliderContainer.noUiSlider.destroy();
}}
// Create the slider
noUiSlider.create(sliderContainer, {{
start: [0, paramChoices.length - 1],
connect: true,
step: 1,
range: {{
'min': 0,
'max': paramChoices.length - 1
}},
pips: {{
mode: 'values',
values: Array.from({{length: paramChoices.length}}, (_, i) => i),
density: 100 / (paramChoices.length - 1),
format: {{
to: function(value) {{
return paramChoices[Math.round(value)];
}}
}}
}}
}});
// Update hidden input when slider changes
sliderContainer.noUiSlider.on('update', function(values) {{
const indices = values.map(v => Math.round(parseFloat(v)));
hiddenInput.value = JSON.stringify(indices);
hiddenInput.dispatchEvent(new Event('input', {{ bubbles: true }}));
// Highlight selected range
document.querySelectorAll('.noUi-value').forEach((pip, index) => {{
const isSelected = index >= indices[0] && index <= indices[1];
pip.style.fontWeight = isSelected ? 'bold' : 'normal';
pip.style.color = isSelected ? '#2563eb' : '#6b7280';
}});
}});
// Initial highlight
document.querySelectorAll('.noUi-value').forEach((pip, index) => {{
const isSelected = index >= 0 && index <= paramChoices.length - 1;
pip.style.fontWeight = isSelected ? 'bold' : 'normal';
pip.style.color = isSelected ? '#2563eb' : '#6b7280';
}});
console.log('Slider initialized successfully');
}}
// Initialize when DOM is ready
if (document.readyState === 'loading') {{
document.addEventListener('DOMContentLoaded', initializeSlider);
}} else {{
initializeSlider();
}}
"""
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, head=custom_head) as demo:
models_data_state = gr.State(pd.DataFrame())
loading_complete_state = gr.State(False)
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(
label="Metric",
choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")],
value="downloads"
)
filter_choice_radio = gr.Radio(
label="Filter Type",
choices=["None", "Tag Filter", "Pipeline Filter"],
value="None"
)
tag_filter_dropdown = gr.Dropdown(
label="Select Tag",
choices=TAG_FILTER_CHOICES,
value=None,
visible=False
)
pipeline_filter_dropdown = gr.Dropdown(
label="Select Pipeline Tag",
choices=PIPELINE_TAGS,
value=None,
visible=False
)
# Parameter range slider section
with gr.Group():
gr.Markdown("### Parameters")
# Custom HTML for the slider
gr.HTML(f"""
<div id="param-slider" style="margin: 20px 10px 60px 10px; height: 20px;"></div>
<style>
#param-slider {{
height: 20px;
}}
.noUi-target {{
background: #f1f5f9;
border-radius: 10px;
border: 1px solid #e2e8f0;
box-shadow: none;
}}
.noUi-connect {{
background: #3b82f6;
border-radius: 10px;
}}
.noUi-handle {{
width: 20px;
height: 20px;
right: -10px;
top: -5px;
background: white;
border: 2px solid #3b82f6;
border-radius: 50%;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
cursor: pointer;
}}
.noUi-handle:before,
.noUi-handle:after {{
display: none;
}}
.noUi-handle:focus {{
outline: none;
}}
.noUi-pips {{
color: #6b7280;
font-size: 12px;
}}
.noUi-pips-horizontal {{
padding: 10px 0;
height: 60px;
}}
.noUi-value {{
font-size: 11px;
padding-top: 5px;
cursor: pointer;
}}
.noUi-marker-horizontal.noUi-marker {{
background: #e2e8f0;
height: 5px;
width: 1px;
}}
</style>
""")
# Hidden input to store slider values
param_range_hidden = gr.Textbox(
value=PARAM_CHOICES_DEFAULT_INDICES_JSON,
visible=False,
elem_id="param-range-hidden"
)
top_k_dropdown = gr.Dropdown(
label="Number of Top Organizations",
choices=TOP_K_CHOICES,
value=25
)
skip_orgs_textbox = gr.Textbox(
label="Organizations to Skip (comma-separated)",
value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski"
)
generate_plot_button = gr.Button(
value="Generate Plot",
variant="primary",
interactive=False
)
with gr.Column(scale=3):
plot_output = gr.Plot()
status_message_md = gr.Markdown("Initializing...")
data_info_md = gr.Markdown("")
# Event handlers
def _update_button_interactivity(is_loaded_flag):
return gr.update(interactive=is_loaded_flag)
loading_complete_state.change(
fn=_update_button_interactivity,
inputs=loading_complete_state,
outputs=generate_plot_button
)
def _toggle_filters_visibility(choice):
return (
gr.update(visible=choice == "Tag Filter"),
gr.update(visible=choice == "Pipeline Filter")
)
filter_choice_radio.change(
fn=_toggle_filters_visibility,
inputs=filter_choice_radio,
outputs=[tag_filter_dropdown, pipeline_filter_dropdown]
)
def ui_load_data_controller(progress=gr.Progress()):
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...")
try:
current_df, load_success_flag, status_msg_from_load = load_models_data()
if load_success_flag:
progress(0.9, desc="Processing data...")
date_display = "Pre-processed (date unavailable)"
if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]):
ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True)
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0
data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with parameter counts: {param_count:,}\n- Data as of: {date_display}\n"
status_msg_ui = "Data loaded. Ready to generate plot."
else:
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
status_msg_ui = status_msg_from_load
except Exception as e:
status_msg_ui = f"An unexpected error occurred: {str(e)}"
data_info_text = f"### Critical Error\n- {status_msg_ui}"
load_success_flag = False
print(f"Critical error in ui_load_data_controller: {e}")
return current_df, load_success_flag, data_info_text, status_msg_ui
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
param_range_json, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
if df_current_models is None or df_current_models.empty:
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
progress(0.1, desc="Preparing data...")
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
try:
param_range_indices = json.loads(param_range_json)
except:
param_range_indices = [0, len(PARAM_CHOICES) - 1]
min_label = PARAM_CHOICES[int(param_range_indices[0])]
max_label = PARAM_CHOICES[int(param_range_indices[1])]
param_labels_for_filtering = [min_label, max_label]
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_labels_for_filtering, orgs_to_skip)
progress(0.7, desc="Generating plot...")
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
if treemap_df.empty:
plot_stats_md = "No data matches the selected filters. Please try different options."
else:
total_items_in_plot = len(treemap_df['id'].unique())
total_value_in_plot = treemap_df[metric_choice].sum()
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
return plotly_fig, plot_stats_md
# Load data on startup and initialize slider
demo.load(
fn=ui_load_data_controller,
inputs=[],
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
)
# Initialize slider after page loads
demo.load(
fn=lambda: None,
inputs=[],
outputs=[],
js=create_slider_js()
)
# Generate plot button click handler
generate_plot_button.click(
fn=ui_generate_plot_controller,
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
param_range_hidden, top_k_dropdown, skip_orgs_textbox, models_data_state],
outputs=[plot_output, status_message_md]
)
if __name__ == "__main__":
print(f"Application starting...")
demo.queue().launch()
# --- END OF FIXED FILE |