File size: 15,688 Bytes
fa2c2d2
f0e2fd8
bbf45d0
 
 
961c6fe
afd7356
961c6fe
 
97da54a
4517d15
afd7356
 
4517d15
 
961c6fe
afd7356
961c6fe
afd7356
4517d15
afd7356
 
4517d15
afd7356
 
 
 
 
 
4517d15
97da54a
 
 
f0e2fd8
97da54a
 
afd7356
 
 
 
 
 
 
961c6fe
97da54a
4517d15
97da54a
 
 
 
961c6fe
97da54a
961c6fe
9c451ee
4517d15
961c6fe
 
4517d15
 
9c451ee
4517d15
 
97da54a
 
4517d15
97da54a
4517d15
 
 
27c66d1
4517d15
 
961c6fe
afd7356
4517d15
 
afd7356
f0e2fd8
961c6fe
 
f0e2fd8
4517d15
9c451ee
 
 
 
f0e2fd8
961c6fe
9c451ee
4517d15
961c6fe
 
bbf45d0
 
4517d15
961c6fe
f0e2fd8
caa5704
4517d15
98b7de8
f0e2fd8
961c6fe
 
 
 
97da54a
 
 
fa2c2d2
97da54a
4517d15
 
fa2c2d2
4517d15
fa2c2d2
97da54a
fa2c2d2
961c6fe
f0e2fd8
 
afd7356
f0e2fd8
961c6fe
f0e2fd8
 
961c6fe
fa2c2d2
4517d15
fa2c2d2
 
 
 
 
4517d15
fa2c2d2
4517d15
fa2c2d2
 
4517d15
fa2c2d2
4517d15
 
 
97da54a
4517d15
 
fa2c2d2
 
97da54a
fa2c2d2
 
4517d15
fa2c2d2
4517d15
961c6fe
 
4517d15
961c6fe
 
fa2c2d2
afd7356
 
4517d15
961c6fe
afd7356
961c6fe
afd7356
fa2c2d2
 
 
 
 
 
 
 
 
 
97da54a
4517d15
961c6fe
4517d15
961c6fe
4517d15
961c6fe
4517d15
961c6fe
f0e2fd8
961c6fe
4d0811f
961c6fe
4517d15
961c6fe
4517d15
afd7356
961c6fe
 
 
f0e2fd8
4517d15
 
 
 
 
9c451ee
afd7356
961c6fe
 
 
afd7356
961c6fe
 
 
f0e2fd8
 
4517d15
961c6fe
 
4517d15
afd7356
bbf45d0
961c6fe
 
fa2c2d2
f0e2fd8
bbf45d0
 
 
afd7356
 
f0e2fd8
fa2c2d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# --- START OF FULLY CORRECTED AND IMPROVED FILE app.py ---

import gradio as gr
import pandas as pd
import plotly.express as px
import time
from datasets import load_dataset # Import the datasets library

# --- Constants ---
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
PARAM_CHOICES_DEFAULT_INDICES = [0, len(PARAM_CHOICES) - 1]

HF_DATASET_ID = "evijit/orgstats_daily_data"
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]

def load_models_data():
    overall_start_time = time.time()
    print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
    expected_cols = [ 'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags', 'params', 'organization', 'has_audio', 'has_speech', 'has_music', 'has_robot', 'has_bio', 'has_med', 'has_series', 'has_video', 'has_image', 'has_text', 'has_science', 'is_audio_speech', 'is_biomed', 'data_download_timestamp' ]
    try:
        dataset_dict = load_dataset(HF_DATASET_ID)
        if not dataset_dict: raise ValueError(f"Dataset '{HF_DATASET_ID}' loaded but appears empty.")
        split_name = list(dataset_dict.keys())[0]
        print(f"Using dataset split: '{split_name}'. Converting to Pandas.")
        df = dataset_dict[split_name].to_pandas()
        elapsed = time.time() - overall_start_time
        missing_cols = [col for col in expected_cols if col not in df.columns]
        if missing_cols:
            if 'params' in missing_cols: raise ValueError(f"FATAL: Loaded dataset is missing the crucial 'params' column.")
            print(f"Warning: Loaded dataset is missing some expected columns: {missing_cols}.")
        if 'params' in df.columns:
            df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0)
        else:
            df['params'] = 0
            print("CRITICAL WARNING: 'params' column not found in data. Parameter filtering will not work.")
        msg = f"Successfully loaded dataset '{HF_DATASET_ID}' (split: {split_name}) from HF Hub in {elapsed:.2f}s. Shape: {df.shape}"
        print(msg)
        return df, True, msg
    except Exception as e:
        err_msg = f"Failed to load dataset '{HF_DATASET_ID}' from Hugging Face Hub. Error: {e}"
        print(err_msg)
        return pd.DataFrame(), False, err_msg

def get_param_range_values(param_range_labels):
    if not param_range_labels or len(param_range_labels) != 2: return None, None
    min_label, max_label = param_range_labels
    min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
    max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
    return min_val, max_val

def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None):
    if df is None or df.empty: return pd.DataFrame()
    filtered_df = df.copy()
    col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
    if tag_filter and tag_filter in col_map:
        target_col = col_map[tag_filter]
        if target_col in filtered_df.columns: filtered_df = filtered_df[filtered_df[target_col]]
        else: print(f"Warning: Tag filter column '{col_map[tag_filter]}' not found in DataFrame.")
    if pipeline_filter:
        if "pipeline_tag" in filtered_df.columns: filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
        else: print(f"Warning: 'pipeline_tag' column not found for filtering.")
    if param_range:
        min_params, max_params = get_param_range_values(param_range)
        is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
        if not is_default_range and 'params' in filtered_df.columns:
            if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
            if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
        elif 'params' not in filtered_df.columns: print("Warning: 'params' column not found for filtering.")
    if skip_orgs and len(skip_orgs) > 0:
        if "organization" in filtered_df.columns: filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
        else: print("Warning: 'organization' column not found for filtering.")
    if filtered_df.empty: return pd.DataFrame()
    if count_by not in filtered_df.columns:
        print(f"Warning: Metric column '{count_by}' not found. Using 0.")
        filtered_df[count_by] = 0.0
    filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors="coerce").fillna(0.0)
    org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
    top_orgs_list = org_totals.index.tolist()
    treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
    treemap_data["root"] = "models"
    treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0)
    return treemap_data

def create_treemap(treemap_data, count_by, title=None):
    if treemap_data.empty:
        fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
        fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
        return fig
    fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly)
    fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
    fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
    return fig

with gr.Blocks(title="ModelVerse Explorer", fill_width=True) as demo:
    models_data_state = gr.State(pd.DataFrame())
    loading_complete_state = gr.State(False)

    with gr.Row(): gr.Markdown("# 🤗 The Hub Org-Model Atlas")
    with gr.Row():
        with gr.Column(scale=1):
            count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
            filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
            tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
            pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
            
            with gr.Group():
                with gr.Row():
                    param_label_display = gr.Markdown("<div style='font-weight: 500;'>Parameters</div>")
                    reset_params_button = gr.Button("🔄 Reset", visible=False, size="sm", min_width=80)
                
                param_slider = gr.Slider(
                    minimum=0, maximum=len(PARAM_CHOICES) - 1, step=1,
                    value=PARAM_CHOICES_DEFAULT_INDICES,
                    label="Parameter Range", show_label=False # Use a hidden label for accessibility
                )

            top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
            skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
            generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)

        with gr.Column(scale=3):
            plot_output = gr.Plot()
            status_message_md = gr.Markdown("Initializing...")
            data_info_md = gr.Markdown("")

    # --- MODIFIED: More robust event handlers for the slider ---
    def _update_slider_ui_elements(current_range_indices):
        """Updates the labels above the slider and the reset button visibility."""
        if not isinstance(current_range_indices, list) or len(current_range_indices) != 2:
            # This is a defensive check to prevent crashes if the input is malformed.
            return gr.update(), gr.update()
            
        min_idx, max_idx = int(current_range_indices[0]), int(current_range_indices[1])
        min_label, max_label = PARAM_CHOICES[min_idx], PARAM_CHOICES[max_idx]
        
        # Using HTML for bold is more reliable in gr.Markdown
        label_md = f"<div style='font-weight: 500;'>Parameters <span style='float: right; font-weight: normal; color: #555;'>{min_label} to {max_label}</span></div>"
        
        is_default = (min_idx == 0 and max_idx == len(PARAM_CHOICES) - 1)
        button_visibility = gr.update(visible=not is_default)
        
        return label_md, button_visibility

    def _reset_param_slider_and_ui():
        """Resets the slider to default and updates the UI elements accordingly."""
        default_label = "<div style='font-weight: 500;'>Parameters</div>"
        return gr.update(value=PARAM_CHOICES_DEFAULT_INDICES), default_label, gr.update(visible=False)

    # Use .change() for better reliability
    param_slider.change(fn=_update_slider_ui_elements, inputs=param_slider, outputs=[param_label_display, reset_params_button])
    reset_params_button.click(fn=_reset_param_slider_and_ui, outputs=[param_slider, param_label_display, reset_params_button])
    
    def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag)
    loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)

    def _toggle_filters_visibility(choice): return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
    filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])

    # --- MODIFIED: Fixed the timezone handling logic ---
    def ui_load_data_controller(progress=gr.Progress()):
        progress(0, desc=f"Loading dataset '{HF_DATASET_ID}' from Hugging Face Hub...")
        status_msg_ui, data_info_text, load_success_flag = "Loading data...", "", False
        try:
            current_df, load_success_flag, status_msg_from_load = load_models_data()
            if load_success_flag:
                progress(0.9, desc="Processing loaded data...")
                date_display = "Pre-processed (date unavailable)"
                if 'data_download_timestamp' in current_df.columns and not current_df.empty and pd.notna(current_df['data_download_timestamp'].iloc[0]):
                    timestamp = pd.to_datetime(current_df['data_download_timestamp'].iloc[0])
                    # Check if tz-aware. If so, convert. If not, localize.
                    if timestamp.tzinfo is None:
                        ts = timestamp.tz_localize('UTC')
                    else:
                        ts = timestamp.tz_convert('UTC')
                    date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')

                param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0
                data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with parameter counts: {param_count:,}\n- Data as of: {date_display}\n"
                status_msg_ui = "Data loaded successfully. Ready to generate plot."
            else:
                data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
                status_msg_ui = status_msg_from_load
        except Exception as e:
            status_msg_ui = f"An unexpected error occurred: {str(e)}"
            data_info_text = f"### Critical Error\n- {status_msg_ui}"
            print(f"Critical error in ui_load_data_controller: {e}")
        return current_df, load_success_flag, data_info_text, status_msg_ui

    def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice, 
                                   param_range_indices, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
        if df_current_models is None or df_current_models.empty:
            return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded or is empty."
        progress(0.1, desc="Preparing data for visualization...")
        tag_to_use = tag_choice if filter_type == "Tag Filter" else None
        pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
        orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
        
        min_label = PARAM_CHOICES[int(param_range_indices[0])]
        max_label = PARAM_CHOICES[int(param_range_indices[1])]
        param_labels_for_filtering = [min_label, max_label]
        
        treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_labels_for_filtering, orgs_to_skip)
        
        progress(0.7, desc="Generating Plotly visualization...")
        title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
        chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
        plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
        
        if treemap_df.empty:
            plot_stats_md = "No data matches the selected filters. Try adjusting your filters."
        else:
            total_items_in_plot = len(treemap_df['id'].unique())
            total_value_in_plot = treemap_df[metric_choice].sum()
            plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
        return plotly_fig, plot_stats_md

    demo.load(fn=ui_load_data_controller, inputs=[], outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md])

    generate_plot_button.click(
        fn=ui_generate_plot_controller,
        inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
                param_slider, top_k_slider, skip_orgs_textbox, models_data_state],
        outputs=[plot_output, status_message_md]
    )

if __name__ == "__main__":
    print(f"Application starting. Data will be loaded from Hugging Face dataset: {HF_DATASET_ID}")
    demo.queue().launch()

# --- END OF FULLY CORRECTED AND IMPROVED FILE app.py ---