Spaces:
Running
Running
File size: 15,688 Bytes
fa2c2d2 f0e2fd8 bbf45d0 961c6fe afd7356 961c6fe 97da54a 4517d15 afd7356 4517d15 961c6fe afd7356 961c6fe afd7356 4517d15 afd7356 4517d15 afd7356 4517d15 97da54a f0e2fd8 97da54a afd7356 961c6fe 97da54a 4517d15 97da54a 961c6fe 97da54a 961c6fe 9c451ee 4517d15 961c6fe 4517d15 9c451ee 4517d15 97da54a 4517d15 97da54a 4517d15 27c66d1 4517d15 961c6fe afd7356 4517d15 afd7356 f0e2fd8 961c6fe f0e2fd8 4517d15 9c451ee f0e2fd8 961c6fe 9c451ee 4517d15 961c6fe bbf45d0 4517d15 961c6fe f0e2fd8 caa5704 4517d15 98b7de8 f0e2fd8 961c6fe 97da54a fa2c2d2 97da54a 4517d15 fa2c2d2 4517d15 fa2c2d2 97da54a fa2c2d2 961c6fe f0e2fd8 afd7356 f0e2fd8 961c6fe f0e2fd8 961c6fe fa2c2d2 4517d15 fa2c2d2 4517d15 fa2c2d2 4517d15 fa2c2d2 4517d15 fa2c2d2 4517d15 97da54a 4517d15 fa2c2d2 97da54a fa2c2d2 4517d15 fa2c2d2 4517d15 961c6fe 4517d15 961c6fe fa2c2d2 afd7356 4517d15 961c6fe afd7356 961c6fe afd7356 fa2c2d2 97da54a 4517d15 961c6fe 4517d15 961c6fe 4517d15 961c6fe 4517d15 961c6fe f0e2fd8 961c6fe 4d0811f 961c6fe 4517d15 961c6fe 4517d15 afd7356 961c6fe f0e2fd8 4517d15 9c451ee afd7356 961c6fe afd7356 961c6fe f0e2fd8 4517d15 961c6fe 4517d15 afd7356 bbf45d0 961c6fe fa2c2d2 f0e2fd8 bbf45d0 afd7356 f0e2fd8 fa2c2d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# --- START OF FULLY CORRECTED AND IMPROVED FILE app.py ---
import gradio as gr
import pandas as pd
import plotly.express as px
import time
from datasets import load_dataset # Import the datasets library
# --- Constants ---
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
PARAM_CHOICES_DEFAULT_INDICES = [0, len(PARAM_CHOICES) - 1]
HF_DATASET_ID = "evijit/orgstats_daily_data"
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]
def load_models_data():
overall_start_time = time.time()
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
expected_cols = [ 'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags', 'params', 'organization', 'has_audio', 'has_speech', 'has_music', 'has_robot', 'has_bio', 'has_med', 'has_series', 'has_video', 'has_image', 'has_text', 'has_science', 'is_audio_speech', 'is_biomed', 'data_download_timestamp' ]
try:
dataset_dict = load_dataset(HF_DATASET_ID)
if not dataset_dict: raise ValueError(f"Dataset '{HF_DATASET_ID}' loaded but appears empty.")
split_name = list(dataset_dict.keys())[0]
print(f"Using dataset split: '{split_name}'. Converting to Pandas.")
df = dataset_dict[split_name].to_pandas()
elapsed = time.time() - overall_start_time
missing_cols = [col for col in expected_cols if col not in df.columns]
if missing_cols:
if 'params' in missing_cols: raise ValueError(f"FATAL: Loaded dataset is missing the crucial 'params' column.")
print(f"Warning: Loaded dataset is missing some expected columns: {missing_cols}.")
if 'params' in df.columns:
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0)
else:
df['params'] = 0
print("CRITICAL WARNING: 'params' column not found in data. Parameter filtering will not work.")
msg = f"Successfully loaded dataset '{HF_DATASET_ID}' (split: {split_name}) from HF Hub in {elapsed:.2f}s. Shape: {df.shape}"
print(msg)
return df, True, msg
except Exception as e:
err_msg = f"Failed to load dataset '{HF_DATASET_ID}' from Hugging Face Hub. Error: {e}"
print(err_msg)
return pd.DataFrame(), False, err_msg
def get_param_range_values(param_range_labels):
if not param_range_labels or len(param_range_labels) != 2: return None, None
min_label, max_label = param_range_labels
min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
return min_val, max_val
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None):
if df is None or df.empty: return pd.DataFrame()
filtered_df = df.copy()
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
if tag_filter and tag_filter in col_map:
target_col = col_map[tag_filter]
if target_col in filtered_df.columns: filtered_df = filtered_df[filtered_df[target_col]]
else: print(f"Warning: Tag filter column '{col_map[tag_filter]}' not found in DataFrame.")
if pipeline_filter:
if "pipeline_tag" in filtered_df.columns: filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
else: print(f"Warning: 'pipeline_tag' column not found for filtering.")
if param_range:
min_params, max_params = get_param_range_values(param_range)
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
if not is_default_range and 'params' in filtered_df.columns:
if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
elif 'params' not in filtered_df.columns: print("Warning: 'params' column not found for filtering.")
if skip_orgs and len(skip_orgs) > 0:
if "organization" in filtered_df.columns: filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
else: print("Warning: 'organization' column not found for filtering.")
if filtered_df.empty: return pd.DataFrame()
if count_by not in filtered_df.columns:
print(f"Warning: Metric column '{count_by}' not found. Using 0.")
filtered_df[count_by] = 0.0
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors="coerce").fillna(0.0)
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
top_orgs_list = org_totals.index.tolist()
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
treemap_data["root"] = "models"
treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0)
return treemap_data
def create_treemap(treemap_data, count_by, title=None):
if treemap_data.empty:
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
return fig
fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
return fig
with gr.Blocks(title="ModelVerse Explorer", fill_width=True) as demo:
models_data_state = gr.State(pd.DataFrame())
loading_complete_state = gr.State(False)
with gr.Row(): gr.Markdown("# 🤗 The Hub Org-Model Atlas")
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
with gr.Group():
with gr.Row():
param_label_display = gr.Markdown("<div style='font-weight: 500;'>Parameters</div>")
reset_params_button = gr.Button("🔄 Reset", visible=False, size="sm", min_width=80)
param_slider = gr.Slider(
minimum=0, maximum=len(PARAM_CHOICES) - 1, step=1,
value=PARAM_CHOICES_DEFAULT_INDICES,
label="Parameter Range", show_label=False # Use a hidden label for accessibility
)
top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
with gr.Column(scale=3):
plot_output = gr.Plot()
status_message_md = gr.Markdown("Initializing...")
data_info_md = gr.Markdown("")
# --- MODIFIED: More robust event handlers for the slider ---
def _update_slider_ui_elements(current_range_indices):
"""Updates the labels above the slider and the reset button visibility."""
if not isinstance(current_range_indices, list) or len(current_range_indices) != 2:
# This is a defensive check to prevent crashes if the input is malformed.
return gr.update(), gr.update()
min_idx, max_idx = int(current_range_indices[0]), int(current_range_indices[1])
min_label, max_label = PARAM_CHOICES[min_idx], PARAM_CHOICES[max_idx]
# Using HTML for bold is more reliable in gr.Markdown
label_md = f"<div style='font-weight: 500;'>Parameters <span style='float: right; font-weight: normal; color: #555;'>{min_label} to {max_label}</span></div>"
is_default = (min_idx == 0 and max_idx == len(PARAM_CHOICES) - 1)
button_visibility = gr.update(visible=not is_default)
return label_md, button_visibility
def _reset_param_slider_and_ui():
"""Resets the slider to default and updates the UI elements accordingly."""
default_label = "<div style='font-weight: 500;'>Parameters</div>"
return gr.update(value=PARAM_CHOICES_DEFAULT_INDICES), default_label, gr.update(visible=False)
# Use .change() for better reliability
param_slider.change(fn=_update_slider_ui_elements, inputs=param_slider, outputs=[param_label_display, reset_params_button])
reset_params_button.click(fn=_reset_param_slider_and_ui, outputs=[param_slider, param_label_display, reset_params_button])
def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag)
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
def _toggle_filters_visibility(choice): return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])
# --- MODIFIED: Fixed the timezone handling logic ---
def ui_load_data_controller(progress=gr.Progress()):
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}' from Hugging Face Hub...")
status_msg_ui, data_info_text, load_success_flag = "Loading data...", "", False
try:
current_df, load_success_flag, status_msg_from_load = load_models_data()
if load_success_flag:
progress(0.9, desc="Processing loaded data...")
date_display = "Pre-processed (date unavailable)"
if 'data_download_timestamp' in current_df.columns and not current_df.empty and pd.notna(current_df['data_download_timestamp'].iloc[0]):
timestamp = pd.to_datetime(current_df['data_download_timestamp'].iloc[0])
# Check if tz-aware. If so, convert. If not, localize.
if timestamp.tzinfo is None:
ts = timestamp.tz_localize('UTC')
else:
ts = timestamp.tz_convert('UTC')
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0
data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with parameter counts: {param_count:,}\n- Data as of: {date_display}\n"
status_msg_ui = "Data loaded successfully. Ready to generate plot."
else:
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
status_msg_ui = status_msg_from_load
except Exception as e:
status_msg_ui = f"An unexpected error occurred: {str(e)}"
data_info_text = f"### Critical Error\n- {status_msg_ui}"
print(f"Critical error in ui_load_data_controller: {e}")
return current_df, load_success_flag, data_info_text, status_msg_ui
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
param_range_indices, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
if df_current_models is None or df_current_models.empty:
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded or is empty."
progress(0.1, desc="Preparing data for visualization...")
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
min_label = PARAM_CHOICES[int(param_range_indices[0])]
max_label = PARAM_CHOICES[int(param_range_indices[1])]
param_labels_for_filtering = [min_label, max_label]
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_labels_for_filtering, orgs_to_skip)
progress(0.7, desc="Generating Plotly visualization...")
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
if treemap_df.empty:
plot_stats_md = "No data matches the selected filters. Try adjusting your filters."
else:
total_items_in_plot = len(treemap_df['id'].unique())
total_value_in_plot = treemap_df[metric_choice].sum()
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
return plotly_fig, plot_stats_md
demo.load(fn=ui_load_data_controller, inputs=[], outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md])
generate_plot_button.click(
fn=ui_generate_plot_controller,
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
param_slider, top_k_slider, skip_orgs_textbox, models_data_state],
outputs=[plot_output, status_message_md]
)
if __name__ == "__main__":
print(f"Application starting. Data will be loaded from Hugging Face dataset: {HF_DATASET_ID}")
demo.queue().launch()
# --- END OF FULLY CORRECTED AND IMPROVED FILE app.py --- |