File size: 13,581 Bytes
b06975a
f0e2fd8
bbf45d0
 
 
961c6fe
b06975a
961c6fe
 
97da54a
4517d15
afd7356
b06975a
 
 
afd7356
4517d15
 
961c6fe
afd7356
961c6fe
afd7356
 
 
4517d15
afd7356
 
 
97da54a
 
f0e2fd8
97da54a
 
afd7356
 
 
 
 
 
 
961c6fe
97da54a
4517d15
97da54a
 
 
 
961c6fe
97da54a
961c6fe
9c451ee
4517d15
b06975a
 
 
 
97da54a
 
4517d15
97da54a
4517d15
 
b06975a
 
961c6fe
b06975a
afd7356
f0e2fd8
961c6fe
 
f0e2fd8
9c451ee
 
 
 
f0e2fd8
961c6fe
9c451ee
4517d15
961c6fe
 
bbf45d0
 
4517d15
961c6fe
f0e2fd8
caa5704
4517d15
98b7de8
f0e2fd8
961c6fe
 
 
 
97da54a
 
 
fa2c2d2
97da54a
4517d15
fa2c2d2
4517d15
b06975a
97da54a
b06975a
 
 
 
 
 
 
fa2c2d2
f0e2fd8
 
afd7356
f0e2fd8
961c6fe
f0e2fd8
 
961c6fe
4517d15
b06975a
4517d15
fa2c2d2
 
 
b06975a
97da54a
4517d15
fa2c2d2
 
97da54a
b06975a
4517d15
fa2c2d2
4517d15
961c6fe
 
4517d15
961c6fe
 
afd7356
b06975a
961c6fe
afd7356
961c6fe
b06975a
fa2c2d2
b06975a
 
fa2c2d2
97da54a
4517d15
b06975a
4517d15
961c6fe
4517d15
961c6fe
b06975a
961c6fe
b06975a
f0e2fd8
961c6fe
4d0811f
961c6fe
4517d15
961c6fe
b06975a
 
961c6fe
 
b06975a
f0e2fd8
4517d15
 
 
 
 
9c451ee
b06975a
961c6fe
 
 
afd7356
961c6fe
b06975a
961c6fe
f0e2fd8
b06975a
4517d15
961c6fe
 
4517d15
afd7356
b06975a
bbf45d0
961c6fe
 
b06975a
f0e2fd8
bbf45d0
 
 
afd7356
 
f0e2fd8
b06975a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# --- START OF FINAL POLISHED FILE app.py ---

import gradio as gr
import pandas as pd
import plotly.express as px
import time
from datasets import load_dataset

# --- Constants ---
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
PARAM_CHOICES_DEFAULT_INDICES = [0, len(PARAM_CHOICES) - 1]

# --- NEW: Define choices for the Top-K dropdown ---
TOP_K_CHOICES = list(range(5, 51, 5))

HF_DATASET_ID = "evijit/orgstats_daily_data"
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]

def load_models_data():
    overall_start_time = time.time()
    print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
    try:
        dataset_dict = load_dataset(HF_DATASET_ID)
        if not dataset_dict: raise ValueError(f"Dataset '{HF_DATASET_ID}' loaded but appears empty.")
        split_name = list(dataset_dict.keys())[0]
        df = dataset_dict[split_name].to_pandas()
        elapsed = time.time() - overall_start_time
        if 'params' in df.columns:
            df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0)
        else:
            df['params'] = 0
            print("CRITICAL WARNING: 'params' column not found in data. Parameter filtering will not work.")
        msg = f"Successfully loaded dataset '{HF_DATASET_ID}' (split: {split_name}) from HF Hub in {elapsed:.2f}s. Shape: {df.shape}"
        print(msg)
        return df, True, msg
    except Exception as e:
        err_msg = f"Failed to load dataset '{HF_DATASET_ID}' from Hugging Face Hub. Error: {e}"
        print(err_msg)
        return pd.DataFrame(), False, err_msg

def get_param_range_values(param_range_labels):
    if not param_range_labels or len(param_range_labels) != 2: return None, None
    min_label, max_label = param_range_labels
    min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
    max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
    return min_val, max_val

def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None):
    if df is None or df.empty: return pd.DataFrame()
    filtered_df = df.copy()
    col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
    if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns:
        filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
    if pipeline_filter and "pipeline_tag" in filtered_df.columns:
        filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
    if param_range:
        min_params, max_params = get_param_range_values(param_range)
        is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
        if not is_default_range and 'params' in filtered_df.columns:
            if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
            if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
    if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns:
        filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
    if filtered_df.empty: return pd.DataFrame()
    if count_by not in filtered_df.columns: filtered_df[count_by] = 0.0
    filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors="coerce").fillna(0.0)
    org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
    top_orgs_list = org_totals.index.tolist()
    treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
    treemap_data["root"] = "models"
    return treemap_data

def create_treemap(treemap_data, count_by, title=None):
    if treemap_data.empty:
        fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
        fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
        return fig
    fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly)
    fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
    fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
    return fig

with gr.Blocks(title="ModelVerse Explorer", fill_width=True) as demo:
    models_data_state = gr.State(pd.DataFrame())
    loading_complete_state = gr.State(False)

    with gr.Row(): gr.Markdown("# 🤗 The Hub Org-Model Atlas")
    with gr.Row():
        with gr.Column(scale=1):
            count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
            filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
            tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
            pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
            
            with gr.Group():
                with gr.Row():
                    param_label_display = gr.Markdown("<div style='font-weight: 500;'>Parameters</div>")
                    reset_params_button = gr.Button("🔄 Reset", visible=False, size="sm", min_width=80)
                param_slider = gr.Slider(
                    minimum=0, maximum=len(PARAM_CHOICES) - 1, step=1,
                    value=PARAM_CHOICES_DEFAULT_INDICES,
                    label="Parameter Range", show_label=False
                )
            
            # --- MODIFIED: Replaced Slider with Dropdown for Top-K selection ---
            top_k_dropdown = gr.Dropdown(
                label="Number of Top Organizations", 
                choices=TOP_K_CHOICES, 
                value=25
            )

            skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
            generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)

        with gr.Column(scale=3):
            plot_output = gr.Plot()
            status_message_md = gr.Markdown("Initializing...")
            data_info_md = gr.Markdown("")

    def _update_slider_ui_elements(current_range_indices):
        if not isinstance(current_range_indices, list) or len(current_range_indices) != 2: return gr.update(), gr.update()
        min_idx, max_idx = int(current_range_indices[0]), int(current_range_indices[1])
        min_label, max_label = PARAM_CHOICES[min_idx], PARAM_CHOICES[max_idx]
        label_md = f"<div style='font-weight: 500;'>Parameters <span style='float: right; font-weight: normal; color: #555;'>{min_label} to {max_label}</span></div>"
        is_default = (min_idx == 0 and max_idx == len(PARAM_CHOICES) - 1)
        return label_md, gr.update(visible=not is_default)

    def _reset_param_slider_and_ui():
        default_label = "<div style='font-weight: 500;'>Parameters</div>"
        return gr.update(value=PARAM_CHOICES_DEFAULT_INDICES), default_label, gr.update(visible=False)

    param_slider.release(fn=_update_slider_ui_elements, inputs=param_slider, outputs=[param_label_display, reset_params_button])
    reset_params_button.click(fn=_reset_param_slider_and_ui, outputs=[param_slider, param_label_display, reset_params_button])
    
    def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag)
    loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)

    def _toggle_filters_visibility(choice): return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
    filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])

    def ui_load_data_controller(progress=gr.Progress()):
        progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...")
        try:
            current_df, load_success_flag, status_msg_from_load = load_models_data()
            if load_success_flag:
                progress(0.9, desc="Processing data...")
                date_display = "Pre-processed (date unavailable)"
                if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]):
                    ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True)
                    date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
                param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0
                data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with parameter counts: {param_count:,}\n- Data as of: {date_display}\n"
                status_msg_ui = "Data loaded. Ready to generate plot."
            else:
                data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
                status_msg_ui = status_msg_from_load
        except Exception as e:
            status_msg_ui = f"An unexpected error occurred during data loading: {str(e)}"
            data_info_text = f"### Critical Error\n- {status_msg_ui}"
            load_success_flag = False
            print(f"Critical error in ui_load_data_controller: {e}")
        return current_df, load_success_flag, data_info_text, status_msg_ui

    def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice, 
                                   param_range_indices, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
        if df_current_models is None or df_current_models.empty:
            return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
        progress(0.1, desc="Preparing data...")
        tag_to_use = tag_choice if filter_type == "Tag Filter" else None
        pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
        orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
        
        min_label = PARAM_CHOICES[int(param_range_indices[0])]
        max_label = PARAM_CHOICES[int(param_range_indices[1])]
        param_labels_for_filtering = [min_label, max_label]
        
        treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_labels_for_filtering, orgs_to_skip)
        
        progress(0.7, desc="Generating plot...")
        title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
        chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
        plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
        
        if treemap_df.empty:
            plot_stats_md = "No data matches the selected filters. Please try different options."
        else:
            total_items_in_plot = len(treemap_df['id'].unique())
            total_value_in_plot = treemap_df[count_by].sum()
            plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
        return plotly_fig, plot_stats_md

    demo.load(fn=ui_load_data_controller, inputs=[], outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md])

    # --- MODIFIED: The inputs list now uses top_k_dropdown ---
    generate_plot_button.click(
        fn=ui_generate_plot_controller,
        inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
                param_slider, top_k_dropdown, skip_orgs_textbox, models_data_state],
        outputs=[plot_output, status_message_md]
    )

if __name__ == "__main__":
    print(f"Application starting. Data will be loaded from Hugging Face dataset: {HF_DATASET_ID}")
    demo.queue().launch()

# --- END OF FINAL POLISHED FILE app.py ---