Spaces:
Running
Running
File size: 17,072 Bytes
97da54a f0e2fd8 bbf45d0 961c6fe afd7356 961c6fe 97da54a afd7356 961c6fe bbf45d0 961c6fe bbf45d0 961c6fe afd7356 961c6fe afd7356 961c6fe afd7356 961c6fe 97da54a 961c6fe afd7356 961c6fe afd7356 97da54a f0e2fd8 97da54a afd7356 961c6fe 97da54a 961c6fe 97da54a 961c6fe 9c451ee 961c6fe caa5704 961c6fe afd7356 9c451ee 961c6fe afd7356 961c6fe afd7356 97da54a afd7356 27c66d1 961c6fe afd7356 961c6fe afd7356 f0e2fd8 961c6fe afd7356 961c6fe f0e2fd8 a1a0756 9c451ee f0e2fd8 961c6fe 9c451ee 961c6fe 98b7de8 a1a0756 9c451ee 961c6fe bbf45d0 f7836a0 961c6fe f0e2fd8 caa5704 f0e2fd8 98b7de8 f0e2fd8 961c6fe 97da54a 961c6fe f0e2fd8 afd7356 f0e2fd8 961c6fe f0e2fd8 961c6fe 97da54a 961c6fe afd7356 961c6fe afd7356 961c6fe afd7356 97da54a f0e2fd8 a1a0756 97da54a 961c6fe afd7356 961c6fe 97da54a 961c6fe f0e2fd8 961c6fe a1a0756 961c6fe f0e2fd8 a1a0756 961c6fe 4d0811f 97da54a 961c6fe 97da54a 961c6fe afd7356 f0e2fd8 961c6fe afd7356 961c6fe f0e2fd8 97da54a 9c451ee afd7356 961c6fe afd7356 961c6fe f0e2fd8 961c6fe afd7356 961c6fe bbf45d0 afd7356 f0e2fd8 961c6fe afd7356 97da54a bbf45d0 961c6fe 97da54a f0e2fd8 bbf45d0 afd7356 f0e2fd8 97da54a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
# --- START OF MODIFIED FILE app.py ---
import gradio as gr
import pandas as pd
import plotly.express as px
import time
from datasets import load_dataset # Import the datasets library
# --- Constants ---
# REMOVED the old MODEL_SIZE_RANGES dictionary.
# NEW: Define the discrete steps for the parameter range slider.
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
PARAM_CHOICES_DEFAULT = [PARAM_CHOICES[0], PARAM_CHOICES[-1]]
# The Hugging Face dataset ID to load.
HF_DATASET_ID = "evijit/orgstats_daily_data"
TAG_FILTER_CHOICES = [
"Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images",
"Text", "Biomedical", "Sciences"
]
PIPELINE_TAGS = [
'text-generation', 'text-to-image', 'text-classification', 'text2text-generation',
'audio-to-audio', 'feature-extraction', 'image-classification', 'translation',
'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition',
'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering',
'image-feature-extraction', 'summarization', 'zero-shot-image-classification',
'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text',
'audio-classification', 'visual-question-answering', 'text-to-video',
'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video',
'multiple-choice', 'unconditional-image-generation', 'video-classification',
'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text',
'table-question-answering',
]
def load_models_data():
"""
Loads the pre-processed models data using the HF datasets library.
"""
overall_start_time = time.time()
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
expected_cols = [
'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags', 'params',
'organization', 'has_audio', 'has_speech', 'has_music',
'has_robot', 'has_bio', 'has_med', 'has_series', 'has_video', 'has_image',
'has_text', 'has_science', 'is_audio_speech', 'is_biomed',
'data_download_timestamp'
]
try:
dataset_dict = load_dataset(HF_DATASET_ID)
if not dataset_dict:
raise ValueError(f"Dataset '{HF_DATASET_ID}' loaded but appears empty.")
split_name = list(dataset_dict.keys())[0]
print(f"Using dataset split: '{split_name}'. Converting to Pandas.")
df = dataset_dict[split_name].to_pandas()
elapsed = time.time() - overall_start_time
missing_cols = [col for col in expected_cols if col not in df.columns]
if missing_cols:
# The 'params' column is crucial for the new slider.
if 'params' in missing_cols:
raise ValueError(f"FATAL: Loaded dataset is missing the crucial 'params' column.")
print(f"Warning: Loaded dataset is missing some expected columns: {missing_cols}.")
# Ensure 'params' column is numeric, coercing errors to NaN and then filling with 0.
# This is important for filtering. Assumes params are in billions.
if 'params' in df.columns:
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0)
else:
# If 'params' is missing after all, create a dummy column to prevent crashes.
df['params'] = 0
print("CRITICAL WARNING: 'params' column not found in data. Parameter filtering will not work.")
msg = f"Successfully loaded dataset '{HF_DATASET_ID}' (split: {split_name}) from HF Hub in {elapsed:.2f}s. Shape: {df.shape}"
print(msg)
return df, True, msg
except Exception as e:
err_msg = f"Failed to load dataset '{HF_DATASET_ID}' from Hugging Face Hub. Error: {e}"
print(err_msg)
return pd.DataFrame(), False, err_msg
# --- NEW: Helper function to parse slider labels into numerical values ---
def get_param_range_values(param_range_labels):
"""Converts a list of two string labels from the slider into a numerical min/max tuple."""
if not param_range_labels or len(param_range_labels) != 2:
return None, None
min_label, max_label = param_range_labels
# Min value logic: '< 1B' becomes 0, otherwise parse the number.
min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
# Max value logic: '> 500B' becomes infinity, otherwise parse the number.
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
return min_val, max_val
# --- MODIFIED: Function signature and filtering logic updated for parameter range ---
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None):
if df is None or df.empty: return pd.DataFrame()
filtered_df = df.copy()
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot",
"Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science",
"Video": "has_video", "Images": "has_image", "Text": "has_text"}
if tag_filter and tag_filter in col_map:
target_col = col_map[tag_filter]
if target_col in filtered_df.columns:
filtered_df = filtered_df[filtered_df[target_col]]
else:
print(f"Warning: Tag filter column '{col_map[tag_filter]}' not found in DataFrame.")
if pipeline_filter:
if "pipeline_tag" in filtered_df.columns:
filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
else:
print(f"Warning: 'pipeline_tag' column not found for filtering.")
# --- MODIFIED: Filtering logic now uses the numerical parameter range ---
if param_range:
min_params, max_params = get_param_range_values(param_range)
is_default_range = (param_range == PARAM_CHOICES_DEFAULT)
# Only filter if the range is not the default full range
if not is_default_range and 'params' in filtered_df.columns:
# The 'params' column is in billions, so the values match our slider
if min_params is not None:
filtered_df = filtered_df[filtered_df['params'] >= min_params]
if max_params is not None and max_params != float('inf'):
# The upper bound is exclusive, e.g., 5B to 64B is [5, 64)
filtered_df = filtered_df[filtered_df['params'] < max_params]
elif 'params' not in filtered_df.columns:
print("Warning: 'params' column not found for filtering.")
if skip_orgs and len(skip_orgs) > 0:
if "organization" in filtered_df.columns:
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
else:
print("Warning: 'organization' column not found for filtering.")
if filtered_df.empty: return pd.DataFrame()
if count_by not in filtered_df.columns:
print(f"Warning: Metric column '{count_by}' not found. Using 0.")
filtered_df[count_by] = 0.0
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors="coerce").fillna(0.0)
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
top_orgs_list = org_totals.index.tolist()
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
treemap_data["root"] = "models"
treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0)
return treemap_data
def create_treemap(treemap_data, count_by, title=None):
if treemap_data.empty:
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
return fig
fig = px.treemap(
treemap_data, path=["root", "organization", "id"], values=count_by,
title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization",
color_discrete_sequence=px.colors.qualitative.Plotly
)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
return fig
with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
models_data_state = gr.State(pd.DataFrame())
loading_complete_state = gr.State(False)
with gr.Row(): gr.Markdown("# HuggingFace Models TreeMap Visualization")
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
# --- MODIFIED: Replaced Dropdown with RangeSlider and a Reset Button ---
with gr.Group():
with gr.Row():
gr.Markdown("<div style='padding-top: 10px; font-weight: 500;'>Parameters</div>")
reset_params_button = gr.Button("🔄 Reset", visible=False, size="sm", min_width=80)
param_range_slider = gr.RangeSlider(
label=None, # Label is handled by Markdown above
choices=PARAM_CHOICES,
value=PARAM_CHOICES_DEFAULT,
)
# --- END OF MODIFICATION ---
top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
with gr.Column(scale=3):
plot_output = gr.Plot()
status_message_md = gr.Markdown("Initializing...")
data_info_md = gr.Markdown("")
# --- NEW: Event handlers for the new parameter slider and reset button ---
def _update_reset_button_visibility(current_range):
"""Shows the reset button only if the slider is not at its default full range."""
is_default = (current_range == PARAM_CHOICES_DEFAULT)
return gr.update(visible=not is_default)
def _reset_param_slider_and_button():
"""Resets the slider to its default value and hides the reset button."""
return gr.update(value=PARAM_CHOICES_DEFAULT), gr.update(visible=False)
param_range_slider.release(fn=_update_reset_button_visibility, inputs=param_range_slider, outputs=reset_params_button)
reset_params_button.click(fn=_reset_param_slider_and_button, outputs=[param_range_slider, reset_params_button])
# --- END OF NEW EVENT HANDLERS ---
def _update_button_interactivity(is_loaded_flag):
return gr.update(interactive=is_loaded_flag)
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
def _toggle_filters_visibility(choice):
return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])
def ui_load_data_controller(progress=gr.Progress()):
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}' from Hugging Face Hub...")
print("ui_load_data_controller called.")
status_msg_ui = "Loading data..."
data_info_text = ""
current_df = pd.DataFrame()
load_success_flag = False
try:
current_df, load_success_flag, status_msg_from_load = load_models_data()
if load_success_flag:
progress(0.9, desc="Processing loaded data...")
if 'data_download_timestamp' in current_df.columns and not current_df.empty and pd.notna(current_df['data_download_timestamp'].iloc[0]):
timestamp_from_parquet = pd.to_datetime(current_df['data_download_timestamp'].iloc[0]).tz_localize('UTC')
data_as_of_date_display = timestamp_from_parquet.strftime('%B %d, %Y, %H:%M:%S %Z')
else:
data_as_of_date_display = "Pre-processed (date unavailable)"
# --- MODIFIED: Removed the old size category distribution text ---
param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0
data_info_text = (f"### Data Information\n"
f"- Source: `{HF_DATASET_ID}`\n"
f"- Overall Status: {status_msg_from_load}\n"
f"- Total models loaded: {len(current_df):,}\n"
f"- Models with parameter counts: {param_count:,}\n"
f"- Data as of: {data_as_of_date_display}\n")
status_msg_ui = "Data loaded successfully. Ready to generate plot."
else:
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
status_msg_ui = status_msg_from_load
except Exception as e:
status_msg_ui = f"An unexpected error occurred in ui_load_data_controller: {str(e)}"
data_info_text = f"### Critical Error\n- {status_msg_ui}"
print(f"Critical error in ui_load_data_controller: {e}")
load_success_flag = False
return current_df, load_success_flag, data_info_text, status_msg_ui
# --- MODIFIED: Updated controller signature and logic to handle new slider ---
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
param_range_choice, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
if df_current_models is None or df_current_models.empty:
empty_fig = create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded")
error_msg = "Model data is not loaded or is empty. Please wait for data to load."
gr.Warning(error_msg)
return empty_fig, error_msg
progress(0.1, desc="Preparing data for visualization...")
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
# Pass the param_range_choice directly to make_treemap_data
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_range_choice, orgs_to_skip)
progress(0.7, desc="Generating Plotly visualization...")
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
if treemap_df.empty:
plot_stats_md = "No data matches the selected filters. Try adjusting your filters."
else:
total_items_in_plot = len(treemap_df['id'].unique())
total_value_in_plot = treemap_df[metric_choice].sum()
plot_stats_md = (f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}")
return plotly_fig, plot_stats_md
demo.load(
fn=ui_load_data_controller,
inputs=[],
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
)
# --- MODIFIED: Updated the inputs list for the click event ---
generate_plot_button.click(
fn=ui_generate_plot_controller,
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
param_range_slider, top_k_slider, skip_orgs_textbox, models_data_state],
outputs=[plot_output, status_message_md]
)
if __name__ == "__main__":
print(f"Application starting. Data will be loaded from Hugging Face dataset: {HF_DATASET_ID}")
demo.queue().launch()
# --- END OF MODIFIED FILE app.py --- |