File size: 17,072 Bytes
97da54a
f0e2fd8
bbf45d0
 
 
961c6fe
afd7356
961c6fe
 
97da54a
 
 
 
afd7356
 
 
961c6fe
 
 
 
 
bbf45d0
 
961c6fe
 
 
 
 
 
 
 
 
 
bbf45d0
 
 
961c6fe
afd7356
 
 
 
961c6fe
afd7356
961c6fe
afd7356
961c6fe
97da54a
961c6fe
 
 
 
 
afd7356
 
 
 
 
961c6fe
afd7356
 
 
 
 
 
 
97da54a
 
 
 
 
 
 
 
 
f0e2fd8
97da54a
 
 
afd7356
 
 
 
 
 
 
 
 
961c6fe
97da54a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
961c6fe
97da54a
 
961c6fe
9c451ee
961c6fe
 
 
caa5704
961c6fe
 
 
 
 
 
afd7356
9c451ee
961c6fe
afd7356
961c6fe
 
afd7356
97da54a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afd7356
27c66d1
961c6fe
 
 
 
afd7356
961c6fe
afd7356
 
 
 
 
 
f0e2fd8
961c6fe
afd7356
961c6fe
f0e2fd8
a1a0756
9c451ee
 
 
 
f0e2fd8
961c6fe
9c451ee
 
961c6fe
98b7de8
a1a0756
9c451ee
961c6fe
 
bbf45d0
 
f7836a0
961c6fe
f0e2fd8
caa5704
f0e2fd8
98b7de8
f0e2fd8
961c6fe
 
 
 
97da54a
 
 
 
 
 
 
 
 
 
 
 
 
961c6fe
f0e2fd8
 
afd7356
f0e2fd8
961c6fe
f0e2fd8
 
961c6fe
97da54a
 
 
 
 
 
 
 
 
 
 
 
 
 
961c6fe
 
 
 
 
 
 
 
afd7356
 
 
961c6fe
 
 
 
 
afd7356
961c6fe
afd7356
 
97da54a
f0e2fd8
 
 
a1a0756
97da54a
 
961c6fe
afd7356
961c6fe
 
97da54a
 
961c6fe
 
f0e2fd8
961c6fe
a1a0756
961c6fe
 
 
f0e2fd8
a1a0756
961c6fe
4d0811f
97da54a
961c6fe
97da54a
961c6fe
 
afd7356
f0e2fd8
961c6fe
afd7356
 
 
961c6fe
 
 
f0e2fd8
97da54a
 
9c451ee
afd7356
 
961c6fe
 
 
afd7356
961c6fe
 
 
f0e2fd8
 
961c6fe
afd7356
961c6fe
 
bbf45d0
afd7356
f0e2fd8
961c6fe
 
afd7356
97da54a
bbf45d0
961c6fe
 
97da54a
f0e2fd8
bbf45d0
 
 
afd7356
 
f0e2fd8
97da54a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# --- START OF MODIFIED FILE app.py ---

import gradio as gr
import pandas as pd
import plotly.express as px
import time
from datasets import load_dataset # Import the datasets library

# --- Constants ---
# REMOVED the old MODEL_SIZE_RANGES dictionary.
# NEW: Define the discrete steps for the parameter range slider.
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
PARAM_CHOICES_DEFAULT = [PARAM_CHOICES[0], PARAM_CHOICES[-1]]

# The Hugging Face dataset ID to load.
HF_DATASET_ID = "evijit/orgstats_daily_data"

TAG_FILTER_CHOICES = [
    "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images",
    "Text", "Biomedical", "Sciences"
]

PIPELINE_TAGS = [
 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation',
 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation',
 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition',
 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering',
 'image-feature-extraction', 'summarization', 'zero-shot-image-classification',
 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text',
 'audio-classification', 'visual-question-answering', 'text-to-video',
 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video',
 'multiple-choice', 'unconditional-image-generation', 'video-classification',
 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text',
 'table-question-answering',
]


def load_models_data():
    """
    Loads the pre-processed models data using the HF datasets library.
    """
    overall_start_time = time.time()
    print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")

    expected_cols = [
        'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags', 'params',
        'organization', 'has_audio', 'has_speech', 'has_music',
        'has_robot', 'has_bio', 'has_med', 'has_series', 'has_video', 'has_image',
        'has_text', 'has_science', 'is_audio_speech', 'is_biomed',
        'data_download_timestamp'
    ]

    try:
        dataset_dict = load_dataset(HF_DATASET_ID)
        
        if not dataset_dict:
             raise ValueError(f"Dataset '{HF_DATASET_ID}' loaded but appears empty.")

        split_name = list(dataset_dict.keys())[0]
        print(f"Using dataset split: '{split_name}'. Converting to Pandas.")
        df = dataset_dict[split_name].to_pandas()
        elapsed = time.time() - overall_start_time
        
        missing_cols = [col for col in expected_cols if col not in df.columns]
        if missing_cols:
            # The 'params' column is crucial for the new slider.
            if 'params' in missing_cols:
                raise ValueError(f"FATAL: Loaded dataset is missing the crucial 'params' column.")
            print(f"Warning: Loaded dataset is missing some expected columns: {missing_cols}.")

        # Ensure 'params' column is numeric, coercing errors to NaN and then filling with 0.
        # This is important for filtering. Assumes params are in billions.
        if 'params' in df.columns:
            df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0)
        else:
            # If 'params' is missing after all, create a dummy column to prevent crashes.
            df['params'] = 0
            print("CRITICAL WARNING: 'params' column not found in data. Parameter filtering will not work.")

        msg = f"Successfully loaded dataset '{HF_DATASET_ID}' (split: {split_name}) from HF Hub in {elapsed:.2f}s. Shape: {df.shape}"
        print(msg)
        return df, True, msg
        
    except Exception as e:
        err_msg = f"Failed to load dataset '{HF_DATASET_ID}' from Hugging Face Hub. Error: {e}"
        print(err_msg)
        return pd.DataFrame(), False, err_msg

# --- NEW: Helper function to parse slider labels into numerical values ---
def get_param_range_values(param_range_labels):
    """Converts a list of two string labels from the slider into a numerical min/max tuple."""
    if not param_range_labels or len(param_range_labels) != 2:
        return None, None
        
    min_label, max_label = param_range_labels
    
    # Min value logic: '< 1B' becomes 0, otherwise parse the number.
    min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
    
    # Max value logic: '> 500B' becomes infinity, otherwise parse the number.
    max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
    
    return min_val, max_val

# --- MODIFIED: Function signature and filtering logic updated for parameter range ---
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None):
    if df is None or df.empty: return pd.DataFrame()
    filtered_df = df.copy()
    col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot",
                "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science",
                "Video": "has_video", "Images": "has_image", "Text": "has_text"}
    
    if tag_filter and tag_filter in col_map:
        target_col = col_map[tag_filter]
        if target_col in filtered_df.columns:
            filtered_df = filtered_df[filtered_df[target_col]]
        else:
            print(f"Warning: Tag filter column '{col_map[tag_filter]}' not found in DataFrame.")

    if pipeline_filter:
        if "pipeline_tag" in filtered_df.columns:
            filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
        else:
            print(f"Warning: 'pipeline_tag' column not found for filtering.")

    # --- MODIFIED: Filtering logic now uses the numerical parameter range ---
    if param_range:
        min_params, max_params = get_param_range_values(param_range)
        is_default_range = (param_range == PARAM_CHOICES_DEFAULT)

        # Only filter if the range is not the default full range
        if not is_default_range and 'params' in filtered_df.columns:
            # The 'params' column is in billions, so the values match our slider
            if min_params is not None:
                filtered_df = filtered_df[filtered_df['params'] >= min_params]
            if max_params is not None and max_params != float('inf'):
                # The upper bound is exclusive, e.g., 5B to 64B is [5, 64)
                filtered_df = filtered_df[filtered_df['params'] < max_params]
        elif 'params' not in filtered_df.columns:
             print("Warning: 'params' column not found for filtering.")


    if skip_orgs and len(skip_orgs) > 0:
        if "organization" in filtered_df.columns:
            filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
        else:
            print("Warning: 'organization' column not found for filtering.")

    if filtered_df.empty: return pd.DataFrame()

    if count_by not in filtered_df.columns:
         print(f"Warning: Metric column '{count_by}' not found. Using 0.")
         filtered_df[count_by] = 0.0
    filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors="coerce").fillna(0.0)
    
    org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
    top_orgs_list = org_totals.index.tolist()
    
    treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
    treemap_data["root"] = "models"
    treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0) 
    return treemap_data

def create_treemap(treemap_data, count_by, title=None):
    if treemap_data.empty:
        fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
        fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
        return fig
    fig = px.treemap(
        treemap_data, path=["root", "organization", "id"], values=count_by,
        title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization",
        color_discrete_sequence=px.colors.qualitative.Plotly
    )
    fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
    fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
    return fig

with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
    models_data_state = gr.State(pd.DataFrame())
    loading_complete_state = gr.State(False)

    with gr.Row(): gr.Markdown("# HuggingFace Models TreeMap Visualization")
    with gr.Row():
        with gr.Column(scale=1):
            count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
            filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
            tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
            pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
            
            # --- MODIFIED: Replaced Dropdown with RangeSlider and a Reset Button ---
            with gr.Group():
                with gr.Row():
                    gr.Markdown("<div style='padding-top: 10px; font-weight: 500;'>Parameters</div>")
                    reset_params_button = gr.Button("🔄 Reset", visible=False, size="sm", min_width=80)
                param_range_slider = gr.RangeSlider(
                    label=None, # Label is handled by Markdown above
                    choices=PARAM_CHOICES,
                    value=PARAM_CHOICES_DEFAULT,
                )
            # --- END OF MODIFICATION ---
            
            top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
            skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
            generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)

        with gr.Column(scale=3):
            plot_output = gr.Plot()
            status_message_md = gr.Markdown("Initializing...")
            data_info_md = gr.Markdown("")

    # --- NEW: Event handlers for the new parameter slider and reset button ---
    def _update_reset_button_visibility(current_range):
        """Shows the reset button only if the slider is not at its default full range."""
        is_default = (current_range == PARAM_CHOICES_DEFAULT)
        return gr.update(visible=not is_default)

    def _reset_param_slider_and_button():
        """Resets the slider to its default value and hides the reset button."""
        return gr.update(value=PARAM_CHOICES_DEFAULT), gr.update(visible=False)

    param_range_slider.release(fn=_update_reset_button_visibility, inputs=param_range_slider, outputs=reset_params_button)
    reset_params_button.click(fn=_reset_param_slider_and_button, outputs=[param_range_slider, reset_params_button])
    # --- END OF NEW EVENT HANDLERS ---

    def _update_button_interactivity(is_loaded_flag):
        return gr.update(interactive=is_loaded_flag)
    loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)

    def _toggle_filters_visibility(choice):
        return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
    filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])

    def ui_load_data_controller(progress=gr.Progress()):
        progress(0, desc=f"Loading dataset '{HF_DATASET_ID}' from Hugging Face Hub...")
        print("ui_load_data_controller called.")
        status_msg_ui = "Loading data..."
        data_info_text = ""
        current_df = pd.DataFrame()
        load_success_flag = False
        try:
            current_df, load_success_flag, status_msg_from_load = load_models_data()
            if load_success_flag:
                progress(0.9, desc="Processing loaded data...")
                if 'data_download_timestamp' in current_df.columns and not current_df.empty and pd.notna(current_df['data_download_timestamp'].iloc[0]):
                    timestamp_from_parquet = pd.to_datetime(current_df['data_download_timestamp'].iloc[0]).tz_localize('UTC')
                    data_as_of_date_display = timestamp_from_parquet.strftime('%B %d, %Y, %H:%M:%S %Z')
                else:
                    data_as_of_date_display = "Pre-processed (date unavailable)"
                
                # --- MODIFIED: Removed the old size category distribution text ---
                param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0
                data_info_text = (f"### Data Information\n"
                                  f"- Source: `{HF_DATASET_ID}`\n"
                                  f"- Overall Status: {status_msg_from_load}\n" 
                                  f"- Total models loaded: {len(current_df):,}\n"
                                  f"- Models with parameter counts: {param_count:,}\n"
                                  f"- Data as of: {data_as_of_date_display}\n")
                
                status_msg_ui = "Data loaded successfully. Ready to generate plot."
            else: 
                data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
                status_msg_ui = status_msg_from_load 
        except Exception as e:
            status_msg_ui = f"An unexpected error occurred in ui_load_data_controller: {str(e)}"
            data_info_text = f"### Critical Error\n- {status_msg_ui}"
            print(f"Critical error in ui_load_data_controller: {e}")
            load_success_flag = False 
        return current_df, load_success_flag, data_info_text, status_msg_ui

    # --- MODIFIED: Updated controller signature and logic to handle new slider ---
    def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice, 
                                   param_range_choice, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
        if df_current_models is None or df_current_models.empty:
            empty_fig = create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded")
            error_msg = "Model data is not loaded or is empty. Please wait for data to load."
            gr.Warning(error_msg)
            return empty_fig, error_msg
        
        progress(0.1, desc="Preparing data for visualization...")
        
        tag_to_use = tag_choice if filter_type == "Tag Filter" else None
        pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
        orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
        
        # Pass the param_range_choice directly to make_treemap_data
        treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_range_choice, orgs_to_skip)
        
        progress(0.7, desc="Generating Plotly visualization...")

        title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
        chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
        plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
        
        if treemap_df.empty:
            plot_stats_md = "No data matches the selected filters. Try adjusting your filters."
        else:
            total_items_in_plot = len(treemap_df['id'].unique())
            total_value_in_plot = treemap_df[metric_choice].sum()
            plot_stats_md = (f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}")
        
        return plotly_fig, plot_stats_md

    demo.load(
        fn=ui_load_data_controller,
        inputs=[],
        outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
    )

    # --- MODIFIED: Updated the inputs list for the click event ---
    generate_plot_button.click(
        fn=ui_generate_plot_controller,
        inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
                param_range_slider, top_k_slider, skip_orgs_textbox, models_data_state],
        outputs=[plot_output, status_message_md]
    )

if __name__ == "__main__":
    print(f"Application starting. Data will be loaded from Hugging Face dataset: {HF_DATASET_ID}")
    demo.queue().launch()

# --- END OF MODIFIED FILE app.py ---