Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import os | |
| import skimage | |
| import matplotlib.pyplot as plt | |
| from PIL import Image | |
| import numpy as np | |
| from collections import OrderedDict | |
| import torch | |
| from imagebind import data | |
| from imagebind.models import imagebind_model | |
| from imagebind.models.imagebind_model import ModalityType | |
| import torch.nn as nn | |
| device = "cpu" #"cuda:0" if torch.cuda.is_available() else "cpu" | |
| model = imagebind_model.imagebind_huge(pretrained=True) | |
| model.eval() | |
| model.to(device) | |
| def image_text_zeroshot(texts): | |
| labels = [texts] | |
| inputs = { | |
| ModalityType.TEXT: data.load_and_transform_text(labels, device) | |
| } | |
| with torch.no_grad(): | |
| embeddings = model(inputs) | |
| # scores = ( | |
| # torch.softmax( | |
| # embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1 | |
| # ) | |
| # .squeeze(0) | |
| # .tolist() | |
| # ) | |
| score_dict = "./assets/ICA-Logo.png" #{label: score for label, score in zip(labels, scores)} | |
| return score_dict | |
| def main(): | |
| iface = gr.Interface( | |
| fn= image_text_zeroshot(texts), | |
| inputs = gr.inputs.Textbox(lines=1, label="texts"), | |
| outputs = gr.inputs.Image(type="filepath", label="Output image"), | |
| description="""...""", | |
| title="ImageBind", | |
| ) | |
| iface.launch() | |
| # def image_classifier(inp): | |
| # return {'cat': 0.3, 'dog': 0.7} | |
| # demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label") | |
| # demo.launch() | |