Spaces:
Runtime error
Runtime error
test
Browse files- app.py +41 -44
- assets/ICA-Logo.png +0 -0
app.py
CHANGED
@@ -17,47 +17,44 @@ model = imagebind_model.imagebind_huge(pretrained=True)
|
|
17 |
model.eval()
|
18 |
model.to(device)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
#
|
30 |
-
|
31 |
-
#
|
32 |
-
#
|
33 |
-
#
|
34 |
-
#
|
35 |
-
#
|
36 |
-
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label")
|
63 |
-
demo.launch()
|
|
|
17 |
model.eval()
|
18 |
model.to(device)
|
19 |
|
20 |
+
def image_text_zeroshot(texts):
|
21 |
+
labels = [texts]
|
22 |
+
inputs = {
|
23 |
+
ModalityType.TEXT: data.load_and_transform_text(labels, device)
|
24 |
+
}
|
25 |
+
|
26 |
+
with torch.no_grad():
|
27 |
+
embeddings = model(inputs)
|
28 |
+
|
29 |
+
# scores = (
|
30 |
+
# torch.softmax(
|
31 |
+
# embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1
|
32 |
+
# )
|
33 |
+
# .squeeze(0)
|
34 |
+
# .tolist()
|
35 |
+
# )
|
36 |
+
|
37 |
+
score_dict = "./assets/ICA-Logo.png" #{label: score for label, score in zip(labels, scores)}
|
38 |
+
|
39 |
+
return score_dict
|
40 |
+
|
41 |
+
|
42 |
+
def main():
|
43 |
+
|
44 |
+
iface = gr.Interface(
|
45 |
+
fn= image_text_zeroshot(texts),
|
46 |
+
inputs = gr.inputs.Textbox(lines=1, label="texts"),
|
47 |
+
outputs = gr.inputs.Image(type="filepath", label="Output image"),
|
48 |
+
description="""...""",
|
49 |
+
title="ImageBind",
|
50 |
+
)
|
51 |
+
|
52 |
+
iface.launch()
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
# def image_classifier(inp):
|
57 |
+
# return {'cat': 0.3, 'dog': 0.7}
|
58 |
+
|
59 |
+
# demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label")
|
60 |
+
# demo.launch()
|
|
|
|
|
|
assets/ICA-Logo.png
ADDED
![]() |