Spaces:
Sleeping
Sleeping
import torch | |
import torchvision.models as models | |
import torchvision.transforms as transforms | |
import torchvision.datasets as datasets | |
from torchvision.transforms import Compose | |
import requests | |
import random | |
import gradio as gr | |
# Predefined models available in torchvision | |
image_prediction_models = { | |
'resnet': models.resnet50, | |
'alexnet': models.alexnet, | |
'vgg': models.vgg16, | |
'squeezenet': models.squeezenet1_0, | |
'densenet': models.densenet161, | |
'inception': models.inception_v3, | |
'googlenet': models.googlenet, | |
'shufflenet': models.shufflenet_v2_x1_0, | |
'mobilenet': models.mobilenet_v2, | |
'resnext': models.resnext50_32x4d, | |
'wide_resnet': models.wide_resnet50_2, | |
'mnasnet': models.mnasnet1_0, | |
'efficientnet': models.efficientnet_b0, | |
'regnet': models.regnet_y_400mf, | |
'vit': models.vit_b_16, | |
'convnext': models.convnext_tiny | |
} | |
# Load a pretrained model from torchvision | |
class ModelLoader: | |
def __init__(self, model_dict): | |
self.model_dict = model_dict | |
def load_model(self, model_name): | |
model_name_lower = model_name.lower() | |
if model_name_lower in self.model_dict: | |
model_class = self.model_dict[model_name_lower] | |
model = model_class(pretrained=True) | |
return model | |
else: | |
raise ValueError(f"Model {model_name} is not available for image prediction in torchvision.models") | |
def get_model_names(self): | |
return [name.capitalize() for name in self.model_dict.keys()] | |
# Preprocessor: Prepares image for model input | |
class Preprocessor: | |
def __init__(self): | |
self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
def preprocess(self, model_name): | |
input_size = 224 | |
if model_name == 'inception': | |
input_size = 299 | |
return transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(input_size), | |
transforms.ToTensor(), | |
self.normalize, | |
]) | |
# Postprocessor: Processes model output | |
class Postprocessor: | |
def __init__(self, labels): | |
self.labels = labels | |
def postprocess_default(self, output): | |
probabilities = torch.nn.functional.softmax(output[0], dim=0) | |
top_prob, top_catid = torch.topk(probabilities, 5) | |
confidences = {self.labels[top_catid[i].item()]: top_prob[i].item() for i in range(top_prob.size(0))} | |
return confidences | |
def postprocess_inception(self, output): | |
probabilities = torch.nn.functional.softmax(output[1], dim=0) | |
top_prob, top_catid = torch.topk(probabilities, 5) | |
confidences = {self.labels[top_catid[i].item()]: top_prob[i].item() for i in range(top_prob.size(0))} | |
return confidences | |
# ImageClassifier: Classifies images using a selected model | |
class ImageClassifier: | |
def __init__(self, model_loader, preprocessor, postprocessor): | |
self.model_loader = model_loader | |
self.preprocessor = preprocessor | |
self.postprocessor = postprocessor | |
def classify(self, input_image, selected_model): | |
preprocess_input = self.preprocessor.preprocess(model_name=selected_model) | |
input_tensor = preprocess_input(input_image) | |
input_batch = input_tensor.unsqueeze(0) | |
model = self.model_loader.load_model(selected_model) | |
if torch.cuda.is_available(): | |
input_batch = input_batch.to('cuda') | |
model.to('cuda') | |
model.eval() | |
with torch.no_grad(): | |
output = model(input_batch) | |
if selected_model.lower() == 'inception': | |
return self.postprocessor.postprocess_inception(output) | |
else: | |
return self.postprocessor.postprocess_default(output) | |
# CIFAR10ImageProvider: Provides random images from CIFAR-10 dataset | |
class CIFAR10ImageProvider: | |
def __init__(self, dataset_root='./data'): | |
self.dataset_root = dataset_root | |
def get_random_image(self): | |
cifar10 = datasets.CIFAR10(root=self.dataset_root, train=False, download=True, transform=transforms.ToTensor()) | |
random_idx = random.randint(0, len(cifar10) - 1) | |
image, _ = cifar10[random_idx] | |
image = transforms.ToPILImage()(image) | |
return image | |
# GradioApp: Sets up the Gradio interface | |
class GradioApp: | |
def __init__(self, image_classifier, image_provider, model_list): | |
self.image_classifier = image_classifier | |
self.image_provider = image_provider | |
self.model_list = model_list | |
def launch(self): | |
with gr.Blocks() as demo: | |
with gr.Tabs(): | |
with gr.TabItem("Upload Image"): | |
with gr.Row(): | |
with gr.Column(): | |
upload_image = gr.Image(type='pil', label="Upload Image") | |
model_dropdown_upload = gr.Dropdown(self.model_list, label="Select Model") | |
classify_button_upload = gr.Button("Classify") | |
with gr.Column(): | |
output_label_upload = gr.Label(num_top_classes=5) | |
classify_button_upload.click(self.image_classifier.classify, inputs=[upload_image, model_dropdown_upload], outputs=output_label_upload) | |
with gr.TabItem("Generate Random Image"): | |
with gr.Row(): | |
with gr.Column(): | |
generate_button = gr.Button("Generate Random Image") | |
random_image_output = gr.Image(type='pil', label="Random CIFAR-10 Image") | |
with gr.Column(): | |
model_dropdown_random = gr.Dropdown(self.model_list, label="Select Model") | |
classify_button_random = gr.Button("Classify") | |
output_label_random = gr.Label(num_top_classes=5) | |
generate_button.click(self.image_provider.get_random_image, inputs=[], outputs=random_image_output) | |
classify_button_random.click(self.image_classifier.classify, inputs=[random_image_output, model_dropdown_random], outputs=output_label_random) | |
demo.launch() | |
# Main Execution | |
if __name__ == "__main__": | |
# Define available models | |
image_prediction_models = { | |
'resnet': models.resnet50, | |
'alexnet': models.alexnet, | |
'vgg': models.vgg16, | |
'squeezenet': models.squeezenet1_0, | |
'densenet': models.densenet161, | |
'inception': models.inception_v3, | |
'googlenet': models.googlenet, | |
'shufflenet': models.shufflenet_v2_x1_0, | |
'mobilenet': models.mobilenet_v2, | |
'resnext': models.resnext50_32x4d, | |
'wide_resnet': models.wide_resnet50_2, | |
'mnasnet': models.mnasnet1_0, | |
'efficientnet': models.efficientnet_b0, | |
'regnet': models.regnet_y_400mf, | |
'vit': models.vit_b_16, | |
'convnext': models.convnext_tiny | |
} | |
# Initialize components | |
model_loader = ModelLoader(image_prediction_models) | |
preprocessor = Preprocessor() | |
response = requests.get("https://git.io/JJkYN") | |
labels = response.text.split("\n") | |
postprocessor = Postprocessor(labels) | |
image_classifier = ImageClassifier(model_loader, preprocessor, postprocessor) | |
image_provider = CIFAR10ImageProvider() | |
model_list = model_loader.get_model_names() | |
# Launch Gradio app | |
app = GradioApp(image_classifier, image_provider, model_list) | |
app.launch() | |