etemkocaaslan's picture
Update app.py
c957273 verified
raw
history blame
7.49 kB
import torch
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torchvision.transforms import Compose
import requests
import random
import gradio as gr
# Predefined models available in torchvision
image_prediction_models = {
'resnet': models.resnet50,
'alexnet': models.alexnet,
'vgg': models.vgg16,
'squeezenet': models.squeezenet1_0,
'densenet': models.densenet161,
'inception': models.inception_v3,
'googlenet': models.googlenet,
'shufflenet': models.shufflenet_v2_x1_0,
'mobilenet': models.mobilenet_v2,
'resnext': models.resnext50_32x4d,
'wide_resnet': models.wide_resnet50_2,
'mnasnet': models.mnasnet1_0,
'efficientnet': models.efficientnet_b0,
'regnet': models.regnet_y_400mf,
'vit': models.vit_b_16,
'convnext': models.convnext_tiny
}
# Load a pretrained model from torchvision
class ModelLoader:
def __init__(self, model_dict):
self.model_dict = model_dict
def load_model(self, model_name):
model_name_lower = model_name.lower()
if model_name_lower in self.model_dict:
model_class = self.model_dict[model_name_lower]
model = model_class(pretrained=True)
return model
else:
raise ValueError(f"Model {model_name} is not available for image prediction in torchvision.models")
def get_model_names(self):
return [name.capitalize() for name in self.model_dict.keys()]
# Preprocessor: Prepares image for model input
class Preprocessor:
def __init__(self):
self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def preprocess(self, model_name):
input_size = 224
if model_name == 'inception':
input_size = 299
return transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
self.normalize,
])
# Postprocessor: Processes model output
class Postprocessor:
def __init__(self, labels):
self.labels = labels
def postprocess_default(self, output):
probabilities = torch.nn.functional.softmax(output[0], dim=0)
top_prob, top_catid = torch.topk(probabilities, 5)
confidences = {self.labels[top_catid[i].item()]: top_prob[i].item() for i in range(top_prob.size(0))}
return confidences
def postprocess_inception(self, output):
probabilities = torch.nn.functional.softmax(output[1], dim=0)
top_prob, top_catid = torch.topk(probabilities, 5)
confidences = {self.labels[top_catid[i].item()]: top_prob[i].item() for i in range(top_prob.size(0))}
return confidences
# ImageClassifier: Classifies images using a selected model
class ImageClassifier:
def __init__(self, model_loader, preprocessor, postprocessor):
self.model_loader = model_loader
self.preprocessor = preprocessor
self.postprocessor = postprocessor
def classify(self, input_image, selected_model):
preprocess_input = self.preprocessor.preprocess(model_name=selected_model)
input_tensor = preprocess_input(input_image)
input_batch = input_tensor.unsqueeze(0)
model = self.model_loader.load_model(selected_model)
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
model.eval()
with torch.no_grad():
output = model(input_batch)
if selected_model.lower() == 'inception':
return self.postprocessor.postprocess_inception(output)
else:
return self.postprocessor.postprocess_default(output)
# CIFAR10ImageProvider: Provides random images from CIFAR-10 dataset
class CIFAR10ImageProvider:
def __init__(self, dataset_root='./data'):
self.dataset_root = dataset_root
def get_random_image(self):
cifar10 = datasets.CIFAR10(root=self.dataset_root, train=False, download=True, transform=transforms.ToTensor())
random_idx = random.randint(0, len(cifar10) - 1)
image, _ = cifar10[random_idx]
image = transforms.ToPILImage()(image)
return image
# GradioApp: Sets up the Gradio interface
class GradioApp:
def __init__(self, image_classifier, image_provider, model_list):
self.image_classifier = image_classifier
self.image_provider = image_provider
self.model_list = model_list
def launch(self):
with gr.Blocks() as demo:
with gr.Tabs():
with gr.TabItem("Upload Image"):
with gr.Row():
with gr.Column():
upload_image = gr.Image(type='pil', label="Upload Image")
model_dropdown_upload = gr.Dropdown(self.model_list, label="Select Model")
classify_button_upload = gr.Button("Classify")
with gr.Column():
output_label_upload = gr.Label(num_top_classes=5)
classify_button_upload.click(self.image_classifier.classify, inputs=[upload_image, model_dropdown_upload], outputs=output_label_upload)
with gr.TabItem("Generate Random Image"):
with gr.Row():
with gr.Column():
generate_button = gr.Button("Generate Random Image")
random_image_output = gr.Image(type='pil', label="Random CIFAR-10 Image")
with gr.Column():
model_dropdown_random = gr.Dropdown(self.model_list, label="Select Model")
classify_button_random = gr.Button("Classify")
output_label_random = gr.Label(num_top_classes=5)
generate_button.click(self.image_provider.get_random_image, inputs=[], outputs=random_image_output)
classify_button_random.click(self.image_classifier.classify, inputs=[random_image_output, model_dropdown_random], outputs=output_label_random)
demo.launch()
# Main Execution
if __name__ == "__main__":
# Define available models
image_prediction_models = {
'resnet': models.resnet50,
'alexnet': models.alexnet,
'vgg': models.vgg16,
'squeezenet': models.squeezenet1_0,
'densenet': models.densenet161,
'inception': models.inception_v3,
'googlenet': models.googlenet,
'shufflenet': models.shufflenet_v2_x1_0,
'mobilenet': models.mobilenet_v2,
'resnext': models.resnext50_32x4d,
'wide_resnet': models.wide_resnet50_2,
'mnasnet': models.mnasnet1_0,
'efficientnet': models.efficientnet_b0,
'regnet': models.regnet_y_400mf,
'vit': models.vit_b_16,
'convnext': models.convnext_tiny
}
# Initialize components
model_loader = ModelLoader(image_prediction_models)
preprocessor = Preprocessor()
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
postprocessor = Postprocessor(labels)
image_classifier = ImageClassifier(model_loader, preprocessor, postprocessor)
image_provider = CIFAR10ImageProvider()
model_list = model_loader.get_model_names()
# Launch Gradio app
app = GradioApp(image_classifier, image_provider, model_list)
app.launch()