File size: 7,490 Bytes
2c85ae1
 
2ee95b8
 
 
2c85ae1
2ee95b8
 
2c85ae1
c957273
2c85ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c957273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torchvision.transforms import Compose
import requests
import random
import gradio as gr

# Predefined models available in torchvision
image_prediction_models = {
    'resnet': models.resnet50,
    'alexnet': models.alexnet,
    'vgg': models.vgg16,
    'squeezenet': models.squeezenet1_0,
    'densenet': models.densenet161,
    'inception': models.inception_v3,
    'googlenet': models.googlenet,
    'shufflenet': models.shufflenet_v2_x1_0,
    'mobilenet': models.mobilenet_v2,
    'resnext': models.resnext50_32x4d,
    'wide_resnet': models.wide_resnet50_2,
    'mnasnet': models.mnasnet1_0,
    'efficientnet': models.efficientnet_b0,
    'regnet': models.regnet_y_400mf,
    'vit': models.vit_b_16,
    'convnext': models.convnext_tiny
}

# Load a pretrained model from torchvision
class ModelLoader:
    def __init__(self, model_dict):
        self.model_dict = model_dict

    def load_model(self, model_name):
        model_name_lower = model_name.lower()
        if model_name_lower in self.model_dict:
            model_class = self.model_dict[model_name_lower]
            model = model_class(pretrained=True)
            return model
        else:
            raise ValueError(f"Model {model_name} is not available for image prediction in torchvision.models")

    def get_model_names(self):
        return [name.capitalize() for name in self.model_dict.keys()]

# Preprocessor: Prepares image for model input
class Preprocessor:
    def __init__(self):
        self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

    def preprocess(self, model_name):
        input_size = 224
        if model_name == 'inception':
            input_size = 299
        return transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(input_size),
            transforms.ToTensor(),
            self.normalize,
        ])

# Postprocessor: Processes model output
class Postprocessor:
    def __init__(self, labels):
        self.labels = labels

    def postprocess_default(self, output):
        probabilities = torch.nn.functional.softmax(output[0], dim=0)
        top_prob, top_catid = torch.topk(probabilities, 5)
        confidences = {self.labels[top_catid[i].item()]: top_prob[i].item() for i in range(top_prob.size(0))}
        return confidences

    def postprocess_inception(self, output):
        probabilities = torch.nn.functional.softmax(output[1], dim=0)
        top_prob, top_catid = torch.topk(probabilities, 5)
        confidences = {self.labels[top_catid[i].item()]: top_prob[i].item() for i in range(top_prob.size(0))}
        return confidences

# ImageClassifier: Classifies images using a selected model
class ImageClassifier:
    def __init__(self, model_loader, preprocessor, postprocessor):
        self.model_loader = model_loader
        self.preprocessor = preprocessor
        self.postprocessor = postprocessor

    def classify(self, input_image, selected_model):
        preprocess_input = self.preprocessor.preprocess(model_name=selected_model)
        input_tensor = preprocess_input(input_image)
        input_batch = input_tensor.unsqueeze(0)
        model = self.model_loader.load_model(selected_model)

        if torch.cuda.is_available():
            input_batch = input_batch.to('cuda')
            model.to('cuda')

        model.eval()
        with torch.no_grad():
            output = model(input_batch)

        if selected_model.lower() == 'inception':
            return self.postprocessor.postprocess_inception(output)
        else:
            return self.postprocessor.postprocess_default(output)

# CIFAR10ImageProvider: Provides random images from CIFAR-10 dataset
class CIFAR10ImageProvider:
    def __init__(self, dataset_root='./data'):
        self.dataset_root = dataset_root

    def get_random_image(self):
        cifar10 = datasets.CIFAR10(root=self.dataset_root, train=False, download=True, transform=transforms.ToTensor())
        random_idx = random.randint(0, len(cifar10) - 1)
        image, _ = cifar10[random_idx]
        image = transforms.ToPILImage()(image)
        return image

# GradioApp: Sets up the Gradio interface
class GradioApp:
    def __init__(self, image_classifier, image_provider, model_list):
        self.image_classifier = image_classifier
        self.image_provider = image_provider
        self.model_list = model_list

    def launch(self):
        with gr.Blocks() as demo:
            with gr.Tabs():
                with gr.TabItem("Upload Image"):
                    with gr.Row():
                        with gr.Column():
                            upload_image = gr.Image(type='pil', label="Upload Image")
                            model_dropdown_upload = gr.Dropdown(self.model_list, label="Select Model")
                            classify_button_upload = gr.Button("Classify")
                        with gr.Column():
                            output_label_upload = gr.Label(num_top_classes=5)
                    classify_button_upload.click(self.image_classifier.classify, inputs=[upload_image, model_dropdown_upload], outputs=output_label_upload)

                with gr.TabItem("Generate Random Image"):
                    with gr.Row():
                        with gr.Column():
                            generate_button = gr.Button("Generate Random Image")
                            random_image_output = gr.Image(type='pil', label="Random CIFAR-10 Image")
                        with gr.Column():
                            model_dropdown_random = gr.Dropdown(self.model_list, label="Select Model")
                            classify_button_random = gr.Button("Classify")
                            output_label_random = gr.Label(num_top_classes=5)
                    generate_button.click(self.image_provider.get_random_image, inputs=[], outputs=random_image_output)
                    classify_button_random.click(self.image_classifier.classify, inputs=[random_image_output, model_dropdown_random], outputs=output_label_random)

        demo.launch()

# Main Execution
if __name__ == "__main__":
    # Define available models
    image_prediction_models = {
        'resnet': models.resnet50,
        'alexnet': models.alexnet,
        'vgg': models.vgg16,
        'squeezenet': models.squeezenet1_0,
        'densenet': models.densenet161,
        'inception': models.inception_v3,
        'googlenet': models.googlenet,
        'shufflenet': models.shufflenet_v2_x1_0,
        'mobilenet': models.mobilenet_v2,
        'resnext': models.resnext50_32x4d,
        'wide_resnet': models.wide_resnet50_2,
        'mnasnet': models.mnasnet1_0,
        'efficientnet': models.efficientnet_b0,
        'regnet': models.regnet_y_400mf,
        'vit': models.vit_b_16,
        'convnext': models.convnext_tiny
    }

    # Initialize components
    model_loader = ModelLoader(image_prediction_models)
    preprocessor = Preprocessor()
    response = requests.get("https://git.io/JJkYN")
    labels = response.text.split("\n")
    postprocessor = Postprocessor(labels)
    image_classifier = ImageClassifier(model_loader, preprocessor, postprocessor)
    image_provider = CIFAR10ImageProvider()

    model_list = model_loader.get_model_names()

    # Launch Gradio app
    app = GradioApp(image_classifier, image_provider, model_list)
    app.launch()