Spaces:
Sleeping
Sleeping
File size: 7,490 Bytes
2c85ae1 2ee95b8 2c85ae1 2ee95b8 2c85ae1 c957273 2c85ae1 c957273 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import torch
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torchvision.transforms import Compose
import requests
import random
import gradio as gr
# Predefined models available in torchvision
image_prediction_models = {
'resnet': models.resnet50,
'alexnet': models.alexnet,
'vgg': models.vgg16,
'squeezenet': models.squeezenet1_0,
'densenet': models.densenet161,
'inception': models.inception_v3,
'googlenet': models.googlenet,
'shufflenet': models.shufflenet_v2_x1_0,
'mobilenet': models.mobilenet_v2,
'resnext': models.resnext50_32x4d,
'wide_resnet': models.wide_resnet50_2,
'mnasnet': models.mnasnet1_0,
'efficientnet': models.efficientnet_b0,
'regnet': models.regnet_y_400mf,
'vit': models.vit_b_16,
'convnext': models.convnext_tiny
}
# Load a pretrained model from torchvision
class ModelLoader:
def __init__(self, model_dict):
self.model_dict = model_dict
def load_model(self, model_name):
model_name_lower = model_name.lower()
if model_name_lower in self.model_dict:
model_class = self.model_dict[model_name_lower]
model = model_class(pretrained=True)
return model
else:
raise ValueError(f"Model {model_name} is not available for image prediction in torchvision.models")
def get_model_names(self):
return [name.capitalize() for name in self.model_dict.keys()]
# Preprocessor: Prepares image for model input
class Preprocessor:
def __init__(self):
self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def preprocess(self, model_name):
input_size = 224
if model_name == 'inception':
input_size = 299
return transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
self.normalize,
])
# Postprocessor: Processes model output
class Postprocessor:
def __init__(self, labels):
self.labels = labels
def postprocess_default(self, output):
probabilities = torch.nn.functional.softmax(output[0], dim=0)
top_prob, top_catid = torch.topk(probabilities, 5)
confidences = {self.labels[top_catid[i].item()]: top_prob[i].item() for i in range(top_prob.size(0))}
return confidences
def postprocess_inception(self, output):
probabilities = torch.nn.functional.softmax(output[1], dim=0)
top_prob, top_catid = torch.topk(probabilities, 5)
confidences = {self.labels[top_catid[i].item()]: top_prob[i].item() for i in range(top_prob.size(0))}
return confidences
# ImageClassifier: Classifies images using a selected model
class ImageClassifier:
def __init__(self, model_loader, preprocessor, postprocessor):
self.model_loader = model_loader
self.preprocessor = preprocessor
self.postprocessor = postprocessor
def classify(self, input_image, selected_model):
preprocess_input = self.preprocessor.preprocess(model_name=selected_model)
input_tensor = preprocess_input(input_image)
input_batch = input_tensor.unsqueeze(0)
model = self.model_loader.load_model(selected_model)
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
model.eval()
with torch.no_grad():
output = model(input_batch)
if selected_model.lower() == 'inception':
return self.postprocessor.postprocess_inception(output)
else:
return self.postprocessor.postprocess_default(output)
# CIFAR10ImageProvider: Provides random images from CIFAR-10 dataset
class CIFAR10ImageProvider:
def __init__(self, dataset_root='./data'):
self.dataset_root = dataset_root
def get_random_image(self):
cifar10 = datasets.CIFAR10(root=self.dataset_root, train=False, download=True, transform=transforms.ToTensor())
random_idx = random.randint(0, len(cifar10) - 1)
image, _ = cifar10[random_idx]
image = transforms.ToPILImage()(image)
return image
# GradioApp: Sets up the Gradio interface
class GradioApp:
def __init__(self, image_classifier, image_provider, model_list):
self.image_classifier = image_classifier
self.image_provider = image_provider
self.model_list = model_list
def launch(self):
with gr.Blocks() as demo:
with gr.Tabs():
with gr.TabItem("Upload Image"):
with gr.Row():
with gr.Column():
upload_image = gr.Image(type='pil', label="Upload Image")
model_dropdown_upload = gr.Dropdown(self.model_list, label="Select Model")
classify_button_upload = gr.Button("Classify")
with gr.Column():
output_label_upload = gr.Label(num_top_classes=5)
classify_button_upload.click(self.image_classifier.classify, inputs=[upload_image, model_dropdown_upload], outputs=output_label_upload)
with gr.TabItem("Generate Random Image"):
with gr.Row():
with gr.Column():
generate_button = gr.Button("Generate Random Image")
random_image_output = gr.Image(type='pil', label="Random CIFAR-10 Image")
with gr.Column():
model_dropdown_random = gr.Dropdown(self.model_list, label="Select Model")
classify_button_random = gr.Button("Classify")
output_label_random = gr.Label(num_top_classes=5)
generate_button.click(self.image_provider.get_random_image, inputs=[], outputs=random_image_output)
classify_button_random.click(self.image_classifier.classify, inputs=[random_image_output, model_dropdown_random], outputs=output_label_random)
demo.launch()
# Main Execution
if __name__ == "__main__":
# Define available models
image_prediction_models = {
'resnet': models.resnet50,
'alexnet': models.alexnet,
'vgg': models.vgg16,
'squeezenet': models.squeezenet1_0,
'densenet': models.densenet161,
'inception': models.inception_v3,
'googlenet': models.googlenet,
'shufflenet': models.shufflenet_v2_x1_0,
'mobilenet': models.mobilenet_v2,
'resnext': models.resnext50_32x4d,
'wide_resnet': models.wide_resnet50_2,
'mnasnet': models.mnasnet1_0,
'efficientnet': models.efficientnet_b0,
'regnet': models.regnet_y_400mf,
'vit': models.vit_b_16,
'convnext': models.convnext_tiny
}
# Initialize components
model_loader = ModelLoader(image_prediction_models)
preprocessor = Preprocessor()
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
postprocessor = Postprocessor(labels)
image_classifier = ImageClassifier(model_loader, preprocessor, postprocessor)
image_provider = CIFAR10ImageProvider()
model_list = model_loader.get_model_names()
# Launch Gradio app
app = GradioApp(image_classifier, image_provider, model_list)
app.launch()
|