Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
import torchvision.models as models
|
4 |
+
from torchvision import transforms
|
5 |
+
import requests
|
6 |
+
|
7 |
+
preprocess = transforms.Compose([
|
8 |
+
transforms.Resize(256),
|
9 |
+
transforms.CenterCrop(224),
|
10 |
+
transforms.ToTensor(),
|
11 |
+
transforms.Normalize(
|
12 |
+
mean=[0.485, 0.456 , 0.406],
|
13 |
+
std=[0.229, 0.224, 0.225]
|
14 |
+
)
|
15 |
+
])
|
16 |
+
|
17 |
+
response = requests.get("https://git.io/JJkYN")
|
18 |
+
labels = response.text.split("\n")
|
19 |
+
|
20 |
+
image_prediction_models = {
|
21 |
+
'resnet': models.resnet50,
|
22 |
+
'alexnet': models.alexnet,
|
23 |
+
'vgg': models.vgg16,
|
24 |
+
'squeezenet': models.squeezenet1_0,
|
25 |
+
'densenet': models.densenet161,
|
26 |
+
'inception': models.inception_v3,
|
27 |
+
'googlenet': models.googlenet,
|
28 |
+
'shufflenet': models.shufflenet_v2_x1_0,
|
29 |
+
'mobilenet': models.mobilenet_v2,
|
30 |
+
'resnext': models.resnext50_32x4d,
|
31 |
+
'wide_resnet': models.wide_resnet50_2,
|
32 |
+
'mnasnet': models.mnasnet1_0,
|
33 |
+
'efficientnet': models.efficientnet_b0,
|
34 |
+
'regnet': models.regnet_y_400mf,
|
35 |
+
'vit': models.vit_b_16,
|
36 |
+
'convnext': models.convnext_tiny
|
37 |
+
}
|
38 |
+
|
39 |
+
def load_pretrained_model(model_name):
|
40 |
+
model_name_lower = model_name.lower()
|
41 |
+
if model_name_lower in image_prediction_models:
|
42 |
+
model_class = image_prediction_models[model_name_lower]
|
43 |
+
model = model_class(pretrained=True)
|
44 |
+
return model
|
45 |
+
else:
|
46 |
+
raise ValueError(f"Model {model_name} is not available for image prediction in torchvision.models")
|
47 |
+
|
48 |
+
def get_model_names(models_dict):
|
49 |
+
return [name.capitalize() for name in models_dict.keys()]
|
50 |
+
|
51 |
+
model_list = get_model_names(image_prediction_models)
|
52 |
+
|
53 |
+
def classify_image(input_image, selected_model):
|
54 |
+
input_tensor = preprocess(input_image)
|
55 |
+
input_batch = input_tensor.unsqueeze(0)
|
56 |
+
model = load_pretrained_model(selected_model)
|
57 |
+
if torch.cuda.is_available():
|
58 |
+
input_batch = input_batch.to('cuda')
|
59 |
+
|
60 |
+
with torch.no_grad():
|
61 |
+
output = model(input_batch)
|
62 |
+
|
63 |
+
probabilities = F.softmax(input = output[0] , dim = 0)
|
64 |
+
top_prob, top_catid = torch.topk(probabilities, 5)
|
65 |
+
confidences = {labels[top_catid[i].item()]: top_prob[i].item() for i in range(top_prob.size(0))}
|
66 |
+
return confidences
|
67 |
+
|
68 |
+
import gradio as gr
|
69 |
+
|
70 |
+
interface = gr.Interface(
|
71 |
+
fn=classify_image,
|
72 |
+
inputs= [gr.Image(type='pil'),
|
73 |
+
gr.Dropdown(model_list)],
|
74 |
+
outputs=gr.Label(num_top_classes=5))
|
75 |
+
interface.launch()
|