Update app.py
Browse files
app.py
CHANGED
@@ -1,105 +1,26 @@
|
|
|
|
|
|
1 |
import pytesseract
|
2 |
import pandas as pd
|
3 |
import re
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
def extract_text(image):
|
13 |
-
"""
|
14 |
-
Extract text from the image using Tesseract.
|
15 |
-
return pytesseract.image_to_string(image)
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
def clean_and_parse_extracted_text(raw_text):
|
20 |
-
"""
|
21 |
-
Parse and clean the raw text to extract structured data.
|
22 |
-
"""
|
23 |
-
# Split the text into lines and clean up
|
24 |
-
lines = raw_text.split("\n")
|
25 |
-
lines = [line.strip() for line in lines if line.strip()]
|
26 |
-
|
27 |
-
# Identify and extract rows with valid components
|
28 |
-
data = []
|
29 |
-
for line in lines:
|
30 |
-
# Match rows containing numeric ranges and values
|
31 |
-
match = re.match(
|
32 |
-
r"^(.*?)(\d+(\.\d+)?)(\s*-?\s*\d+(\.\d+)?\s*-?\s*\d+(\.\d+)?)?\s*([a-zA-Z/%]+)?\s*(H|L|Normal)?$",
|
33 |
-
line,
|
34 |
-
unit = match.group(7)
|
35 |
-
flag = "Normal" # Default flag
|
36 |
-
|
37 |
-
# Determine the flag based on value and range
|
38 |
-
if min_val is not None and max_val is not None:
|
39 |
-
if value < min_val:
|
40 |
-
flag = "L"
|
41 |
-
elif value > max_val:
|
42 |
-
flag = "H"
|
43 |
-
|
44 |
-
# Only append the data if the flag is abnormal (L or H)
|
45 |
-
if flag != "Normal":
|
46 |
-
data.append([component, value, min_val, max_val, unit, flag])
|
47 |
-
|
48 |
-
# Create a DataFrame
|
49 |
-
df = pd.DataFrame(data, columns=["Component", "Your Value", "Min", "Max", "Units", "Flag"])
|
50 |
-
|
51 |
-
# Fix misspellings and inconsistencies (if any known issues exist)
|
52 |
-
correction_map = {
|
53 |
-
"emoglobin": "Hemoglobin",
|
54 |
-
"ematocrit": "Hematocrit",
|
55 |
-
return df
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
def display_results(df):
|
77 |
-
"""
|
78 |
-
Display the flagged abnormalities in a table format.
|
79 |
-
"""
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
st.dataframe(df, use_container_width=True)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
# Streamlit app
|
93 |
-
st.title("Blood Report Analyzer")
|
94 |
-
st.write("Upload an image of a blood test report to analyze.")
|
95 |
|
96 |
uploaded_file = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
|
97 |
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
100 |
|
101 |
-
#
|
102 |
-
|
103 |
-
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
import pytesseract
|
4 |
import pandas as pd
|
5 |
import re
|
6 |
|
7 |
+
st.title("Blood Test Analyzer with RAG")
|
8 |
+
st.write("Upload an image of your blood test report to analyze and get recommendations.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
uploaded_file = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
|
11 |
|
12 |
+
if uploaded_file is not None:
|
13 |
+
try:
|
14 |
+
# Load the image
|
15 |
+
image = Image.open(uploaded_file)
|
16 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
17 |
|
18 |
+
# Step 1: Extract text using Tesseract
|
19 |
+
extracted_text = pytesseract.image_to_string(image)
|
20 |
+
st.text_area("Extracted Text", extracted_text, height=200)
|
21 |
|
22 |
+
# Placeholder for parsed data
|
23 |
+
st.subheader("Flagged Abnormalities")
|
24 |
+
st.write("Parsing logic and RAG recommendations will go here.")
|
25 |
+
except Exception as e:
|
26 |
+
st.error(f"An error occurred: {e}")
|