Update app.py
Browse files
app.py
CHANGED
@@ -1,129 +1,105 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from PIL import Image
|
3 |
import pytesseract
|
4 |
import pandas as pd
|
5 |
import re
|
6 |
-
import openai
|
7 |
|
8 |
|
9 |
-
# Setup OpenAI API key (replace with your OpenAI API key)
|
10 |
-
openai.api_key = "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"
|
11 |
|
12 |
|
13 |
-
|
|
|
|
|
|
|
14 |
def extract_text(image):
|
15 |
"""
|
16 |
Extract text from the image using Tesseract.
|
17 |
-
"""
|
18 |
return pytesseract.image_to_string(image)
|
19 |
|
20 |
|
21 |
-
|
22 |
def clean_and_parse_extracted_text(raw_text):
|
23 |
"""
|
24 |
Parse and clean the raw text to extract structured data.
|
25 |
"""
|
|
|
26 |
lines = raw_text.split("\n")
|
27 |
lines = [line.strip() for line in lines if line.strip()]
|
28 |
|
|
|
29 |
data = []
|
30 |
for line in lines:
|
|
|
31 |
match = re.match(
|
32 |
r"^(.*?)(\d+(\.\d+)?)(\s*-?\s*\d+(\.\d+)?\s*-?\s*\d+(\.\d+)?)?\s*([a-zA-Z/%]+)?\s*(H|L|Normal)?$",
|
33 |
line,
|
34 |
-
)
|
35 |
-
if match:
|
36 |
-
component = match.group(1).strip()
|
37 |
-
value = float(match.group(2))
|
38 |
-
range_match = match.group(4)
|
39 |
-
if range_match:
|
40 |
-
ranges = re.findall(r"[\d.]+", range_match)
|
41 |
-
min_val = float(ranges[0]) if len(ranges) > 0 else None
|
42 |
-
max_val = float(ranges[1]) if len(ranges) > 1 else None
|
43 |
-
else:
|
44 |
-
min_val = None
|
45 |
-
max_val = None
|
46 |
unit = match.group(7)
|
47 |
flag = "Normal" # Default flag
|
48 |
|
|
|
49 |
if min_val is not None and max_val is not None:
|
50 |
if value < min_val:
|
51 |
flag = "L"
|
52 |
elif value > max_val:
|
53 |
flag = "H"
|
54 |
|
|
|
55 |
if flag != "Normal":
|
56 |
data.append([component, value, min_val, max_val, unit, flag])
|
57 |
|
|
|
58 |
df = pd.DataFrame(data, columns=["Component", "Your Value", "Min", "Max", "Units", "Flag"])
|
|
|
|
|
59 |
correction_map = {
|
60 |
"emoglobin": "Hemoglobin",
|
61 |
"ematocrit": "Hematocrit",
|
62 |
-
"% Platelet Count": "Platelet Count",
|
63 |
-
"ymphocyte %": "Lymphocyte %",
|
64 |
-
"L Differential Type Automated": "Differential Type",
|
65 |
-
}
|
66 |
-
df["Component"] = df["Component"].replace(correction_map)
|
67 |
-
|
68 |
return df
|
69 |
|
70 |
|
71 |
-
# Function to generate AI-powered recommendations using OpenAI GPT
|
72 |
-
def generate_medical_recommendation(test_results):
|
73 |
-
"""
|
74 |
-
Generate medical recommendations using OpenAI GPT model based on abnormal test results.
|
75 |
-
"""
|
76 |
-
# Create a structured input for the model
|
77 |
-
prompt = f"Given the following blood test results: {test_results}, provide medical recommendations for a patient."
|
78 |
|
79 |
-
response = openai.Completion.create(
|
80 |
-
model="gpt-4", # Use GPT-4 for medical-based responses
|
81 |
-
prompt=prompt,
|
82 |
-
max_tokens=150
|
83 |
-
)
|
84 |
|
85 |
-
return response.choices[0].text.strip()
|
86 |
|
87 |
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
def display_results(df):
|
90 |
"""
|
91 |
-
Display the flagged abnormalities
|
92 |
"""
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
st.dataframe(df, use_container_width=True)
|
100 |
-
|
101 |
-
st.subheader("Medical Recommendations from AI")
|
102 |
-
st.write(recommendation)
|
103 |
|
104 |
|
105 |
-
# Streamlit app
|
106 |
-
st.title("Blood Report Analyzer with AI Recommendations")
|
107 |
-
st.write("Upload an image of a blood test report to analyze and get AI-powered recommendations.")
|
108 |
|
109 |
-
uploaded_file = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
|
110 |
|
111 |
-
if uploaded_file is not None:
|
112 |
-
try:
|
113 |
-
# Load the image
|
114 |
-
image = Image.open(uploaded_file)
|
115 |
|
116 |
-
|
117 |
-
|
|
|
118 |
|
119 |
-
|
120 |
-
extracted_text = extract_text(image)
|
121 |
|
122 |
# Parse the extracted text into a structured format
|
123 |
parsed_data = clean_and_parse_extracted_text(extracted_text)
|
124 |
|
125 |
-
# Display the structured data
|
|
|
126 |
display_results(parsed_data)
|
127 |
|
128 |
-
except Exception as e:
|
129 |
-
st.error(f"An error occurred: {e}")
|
|
|
|
|
|
|
1 |
import pytesseract
|
2 |
import pandas as pd
|
3 |
import re
|
|
|
4 |
|
5 |
|
|
|
|
|
6 |
|
7 |
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
def extract_text(image):
|
13 |
"""
|
14 |
Extract text from the image using Tesseract.
|
|
|
15 |
return pytesseract.image_to_string(image)
|
16 |
|
17 |
|
18 |
+
|
19 |
def clean_and_parse_extracted_text(raw_text):
|
20 |
"""
|
21 |
Parse and clean the raw text to extract structured data.
|
22 |
"""
|
23 |
+
# Split the text into lines and clean up
|
24 |
lines = raw_text.split("\n")
|
25 |
lines = [line.strip() for line in lines if line.strip()]
|
26 |
|
27 |
+
# Identify and extract rows with valid components
|
28 |
data = []
|
29 |
for line in lines:
|
30 |
+
# Match rows containing numeric ranges and values
|
31 |
match = re.match(
|
32 |
r"^(.*?)(\d+(\.\d+)?)(\s*-?\s*\d+(\.\d+)?\s*-?\s*\d+(\.\d+)?)?\s*([a-zA-Z/%]+)?\s*(H|L|Normal)?$",
|
33 |
line,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
unit = match.group(7)
|
35 |
flag = "Normal" # Default flag
|
36 |
|
37 |
+
# Determine the flag based on value and range
|
38 |
if min_val is not None and max_val is not None:
|
39 |
if value < min_val:
|
40 |
flag = "L"
|
41 |
elif value > max_val:
|
42 |
flag = "H"
|
43 |
|
44 |
+
# Only append the data if the flag is abnormal (L or H)
|
45 |
if flag != "Normal":
|
46 |
data.append([component, value, min_val, max_val, unit, flag])
|
47 |
|
48 |
+
# Create a DataFrame
|
49 |
df = pd.DataFrame(data, columns=["Component", "Your Value", "Min", "Max", "Units", "Flag"])
|
50 |
+
|
51 |
+
# Fix misspellings and inconsistencies (if any known issues exist)
|
52 |
correction_map = {
|
53 |
"emoglobin": "Hemoglobin",
|
54 |
"ematocrit": "Hematocrit",
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
return df
|
56 |
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|
|
60 |
|
61 |
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
def display_results(df):
|
77 |
"""
|
78 |
+
Display the flagged abnormalities in a table format.
|
79 |
"""
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
st.dataframe(df, use_container_width=True)
|
|
|
|
|
|
|
87 |
|
88 |
|
|
|
|
|
|
|
89 |
|
|
|
90 |
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
# Streamlit app
|
93 |
+
st.title("Blood Report Analyzer")
|
94 |
+
st.write("Upload an image of a blood test report to analyze.")
|
95 |
|
96 |
+
uploaded_file = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
|
|
|
97 |
|
98 |
# Parse the extracted text into a structured format
|
99 |
parsed_data = clean_and_parse_extracted_text(extracted_text)
|
100 |
|
101 |
+
# Display the structured data (only abnormalities)
|
102 |
+
st.subheader("Flagged Abnormalities")
|
103 |
display_results(parsed_data)
|
104 |
|
105 |
+
except Exception as e:
|
|