File size: 6,209 Bytes
d48259d
28aa278
d48259d
28aa278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d48259d
28aa278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69a0b0
28aa278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import warnings
from transformers.utils import logging as transformers_logging

# Silence all transformers warnings
transformers_logging.set_verbosity_error()
warnings.filterwarnings("ignore", category=UserWarning)

import gradio as gr
import torch
from transformers import (
    SpeechT5Processor,
    SpeechT5ForTextToSpeech,
    SpeechT5HifiGan,
    pipeline
)
import json
import soundfile as sf
import numpy as np
from huggingface_hub import login
from jiwer import wer

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# -------------------------------------------------------------------------------------------------------------------

# Authentication $ Env Setup
HF_Key = os.environ.get("HF_Key")
login(token = HF_Key)

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Silence all transformers warnings
transformers_logging.set_verbosity_error()
warnings.filterwarnings("ignore", category=UserWarning)


# -------------------------------------------------------------------------------------------------------------------

def cosine_sim_wer_single(reference, prediction):
    """
    Calculate a WER-like metric based on cosine similarity for a single reference-prediction pair

    Args:
        reference: Single reference transcript (string)
        prediction: Single model prediction (string)

    Returns:
        Error rate based on cosine similarity (100% - similarity%)
    """
    # Clean inputs
    ref = reference.strip() if reference else ""
    pred = prediction.strip() if prediction else ""

    # Handle empty inputs
    if not ref or not pred:
        print("Warning: Empty reference or prediction")
        return 100.0  # Return 100% error for invalid input

    try:
        # Use character n-grams to handle morphological variations better
        vectorizer = CountVectorizer(analyzer='char_wb', ngram_range=(2, 3))

        # Fit and transform
        vectors = vectorizer.fit_transform([ref, pred])

        # Calculate cosine similarity
        similarity = cosine_similarity(vectors[0:1], vectors[1:2])[0][0] * 100

        # Convert to error rate (100% - similarity%)
        error_rate = 100.0 - similarity

        print(f"Similarity: {similarity:.2f}%")
        print(f"Error rate: {error_rate:.2f}%")

    except Exception as e:
        print(f"Error calculating similarity: {e}")
        return 100.0  # Return 100% error in case of calculation failure
    
# -------------------------------------------------------------------------------------------------------------------

## TTS Module
speaker_file_path = 'speaker2.json'
model_id = 'eolang/speecht5_v4-2'

with open(speaker_file_path, 'r') as file:
    example = json.load(file)

speaker_embeddings = torch.tensor(example).unsqueeze(0)

l_model = SpeechT5ForTextToSpeech.from_pretrained(
    "eolang/speecht5_v4-2"
)

l_processor = SpeechT5Processor.from_pretrained("eolang/speecht5_v4-2")
l_vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")

def synthesize(input_text):
    inputs = l_processor(text=input_text, return_tensors="pt")
    speech = l_model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=l_vocoder)
    
    # Audio(speech.numpy(), rate=16000)
    sf.write('test_output.wav', speech.numpy(), 16000)
    
    # return speech

# -------------------------------------------------------------------------------------------------------------------

## STT Module
### Custom/Tunned Whisper
tuned_pipeline = pipeline(
    "automatic-speech-recognition",
    model="eolang/whisper-small-sw-WER-13-zindi",
    device = device,
    return_timestamps=True,
    generate_kwargs={
        "no_repeat_ngram_size": 3,  # Blocks repeating 3-grams
        "repetition_penalty": 1.5,  # Penalize repetitions (1.0 = no penalty)
    }
)


def tunned_transcribe(filepath):
    transcription = tuned_pipeline(filepath, return_timestamps=True)
    return transcription["text"]



### OpenAI WHisper (Un-tuned)
openai_pipeline = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-small",
    device = device,
    return_timestamps=True,
    generate_kwargs={
        "no_repeat_ngram_size": 3,  # Blocks repeating 3-grams
        "repetition_penalty": 1.5,  # Penalize repetitions (1.0 = no penalty)
    }
)


def openai_transcribe(filepath):
    transcription = openai_pipeline(filepath, return_timestamps=True)
    return transcription["text"]

# -------------------------------------------------------------------------------------------------------------------

## Full Loop module
def full_loop(ref_text):
    # synthesize
    synthesize(ref_text)
    
    # Get transcriptions USING THE WRAPPER FUNCTIONS that return just text
    tunned_transcription = tunned_transcribe('test_output.wav')
    openai_trancsription = openai_transcribe('test_output.wav')
    
    tunned_WER = wer(ref_text, tunned_transcription)
    base_WER = wer(ref_text, openai_trancsription)
    
    result = f'Tunned Model transciption: {tunned_transcription}\n'
    result += f"Word error rate for the tunned model: {round(tunned_WER, 2)}\n"
    
    # Call cosine sim for tuned model (this will print results)
    cosine_sim_wer_single(ref_text, tunned_transcription)
    
    result += f'\nBase Model transciption: {openai_trancsription}\n'
    result += f"Word error rate for base-untunned model: {round(base_WER, 2)}\n"
    
    # Call cosine sim for base model (this will print results)
    cosine_sim_wer_single(ref_text, openai_trancsription)
    
    return 'test_output.wav', result

# -------------------------------------------------------------------------------------------------------------------
# Add minimal Gradio wrapper

# Create a simple Gradio interface
demo = gr.Interface(
    fn=full_loop,  # Use your existing function without modifications
    inputs=gr.Textbox(value="Kuna mambo kadhaa yanayoitajika kuzingatiwa wakati wa kufundisha modeli."),
    outputs=[gr.Audio(), gr.Textbox()],
    title="TTS-STT Evaluation"
)

# Launch the interface
if __name__ == "__main__":
    demo.launch()