Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
# Silence all transformers warnings
|
4 |
+
transformers_logging.set_verbosity_error()
|
5 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
from transformers import (
|
10 |
+
SpeechT5Processor,
|
11 |
+
SpeechT5ForTextToSpeech,
|
12 |
+
SpeechT5HifiGan,
|
13 |
+
pipeline
|
14 |
+
)
|
15 |
+
import json
|
16 |
+
import soundfile as sf
|
17 |
+
import numpy as np
|
18 |
+
from huggingface_hub import login
|
19 |
+
from jiwer import wer
|
20 |
+
from transformers.utils import logging as transformers_logging
|
21 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
22 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
23 |
+
import os
|
24 |
+
|
25 |
+
# -------------------------------------------------------------------------------------------------------------------
|
26 |
+
|
27 |
+
# Authentication $ Env Setup
|
28 |
+
HF_Key = os.environ.get("HF_Key")
|
29 |
+
login(token = HF_Key)
|
30 |
+
|
31 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
32 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
33 |
+
|
34 |
+
# Silence all transformers warnings
|
35 |
+
transformers_logging.set_verbosity_error()
|
36 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
37 |
+
|
38 |
+
# -------------------------------------------------------------------------------------------------------------------
|
39 |
+
|
40 |
+
def cosine_sim_wer_single(reference, prediction):
|
41 |
+
"""
|
42 |
+
Calculate a WER-like metric based on cosine similarity for a single reference-prediction pair
|
43 |
+
|
44 |
+
Args:
|
45 |
+
reference: Single reference transcript (string)
|
46 |
+
prediction: Single model prediction (string)
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
Error rate based on cosine similarity (100% - similarity%)
|
50 |
+
"""
|
51 |
+
# Clean inputs
|
52 |
+
ref = reference.strip() if reference else ""
|
53 |
+
pred = prediction.strip() if prediction else ""
|
54 |
+
|
55 |
+
# Handle empty inputs
|
56 |
+
if not ref or not pred:
|
57 |
+
print("Warning: Empty reference or prediction")
|
58 |
+
return 100.0 # Return 100% error for invalid input
|
59 |
+
|
60 |
+
try:
|
61 |
+
# Use character n-grams to handle morphological variations better
|
62 |
+
vectorizer = CountVectorizer(analyzer='char_wb', ngram_range=(2, 3))
|
63 |
+
|
64 |
+
# Fit and transform
|
65 |
+
vectors = vectorizer.fit_transform([ref, pred])
|
66 |
+
|
67 |
+
# Calculate cosine similarity
|
68 |
+
similarity = cosine_similarity(vectors[0:1], vectors[1:2])[0][0] * 100
|
69 |
+
|
70 |
+
# Convert to error rate (100% - similarity%)
|
71 |
+
error_rate = 100.0 - similarity
|
72 |
+
|
73 |
+
print(f"Similarity: {similarity:.2f}%")
|
74 |
+
print(f"Error rate: {error_rate:.2f}%")
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Error calculating similarity: {e}")
|
78 |
+
return 100.0 # Return 100% error in case of calculation failure
|
79 |
+
|
80 |
+
# -------------------------------------------------------------------------------------------------------------------
|
81 |
+
|
82 |
+
## TTS Module
|
83 |
+
speaker_file_path = 'speaker2.json'
|
84 |
+
model_id = 'eolang/speecht5_v4-2'
|
85 |
+
|
86 |
+
with open(speaker_file_path, 'r') as file:
|
87 |
+
example = json.load(file)
|
88 |
+
|
89 |
+
speaker_embeddings = torch.tensor(example).unsqueeze(0)
|
90 |
+
|
91 |
+
l_model = SpeechT5ForTextToSpeech.from_pretrained(
|
92 |
+
"eolang/speecht5_v4-2"
|
93 |
+
)
|
94 |
+
|
95 |
+
l_processor = SpeechT5Processor.from_pretrained("eolang/speecht5_v4-2")
|
96 |
+
l_vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
97 |
+
|
98 |
+
def synthesize(input_text):
|
99 |
+
inputs = l_processor(text=input_text, return_tensors="pt")
|
100 |
+
speech = l_model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=l_vocoder)
|
101 |
+
|
102 |
+
# Audio(speech.numpy(), rate=16000)
|
103 |
+
sf.write('test_output.wav', speech.numpy(), 16000)
|
104 |
+
|
105 |
+
# return speech
|
106 |
+
|
107 |
+
# -------------------------------------------------------------------------------------------------------------------
|
108 |
+
|
109 |
+
## STT Module
|
110 |
+
### Custom/Tunned Whisper
|
111 |
+
tuned_pipeline = pipeline(
|
112 |
+
"automatic-speech-recognition",
|
113 |
+
model="eolang/whisper-small-sw-WER-13-zindi",
|
114 |
+
device = device,
|
115 |
+
return_timestamps=True,
|
116 |
+
generate_kwargs={
|
117 |
+
"no_repeat_ngram_size": 3, # Blocks repeating 3-grams
|
118 |
+
"repetition_penalty": 1.5, # Penalize repetitions (1.0 = no penalty)
|
119 |
+
}
|
120 |
+
)
|
121 |
+
|
122 |
+
|
123 |
+
def tunned_transcribe(filepath):
|
124 |
+
transcription = tuned_pipeline(filepath, return_timestamps=True)
|
125 |
+
return transcription["text"]
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
### OpenAI WHisper (Un-tuned)
|
130 |
+
openai_pipeline = pipeline(
|
131 |
+
"automatic-speech-recognition",
|
132 |
+
model="openai/whisper-small",
|
133 |
+
device = device,
|
134 |
+
return_timestamps=True,
|
135 |
+
generate_kwargs={
|
136 |
+
"no_repeat_ngram_size": 3, # Blocks repeating 3-grams
|
137 |
+
"repetition_penalty": 1.5, # Penalize repetitions (1.0 = no penalty)
|
138 |
+
}
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
def openai_transcribe(filepath):
|
143 |
+
transcription = openai_pipeline(filepath, return_timestamps=True)
|
144 |
+
return transcription["text"]
|
145 |
+
|
146 |
+
# -------------------------------------------------------------------------------------------------------------------
|
147 |
+
|
148 |
+
## Full Loop module
|
149 |
+
def full_loop(ref_text):
|
150 |
+
# synthesize
|
151 |
+
synthesize(ref_text)
|
152 |
+
|
153 |
+
# Get transcriptions USING THE WRAPPER FUNCTIONS that return just text
|
154 |
+
tunned_transcription = tunned_transcribe('test_output.wav')
|
155 |
+
openai_trancsription = openai_transcribe('test_output.wav')
|
156 |
+
|
157 |
+
tunned_WER = wer(ref_text, tunned_transcription)
|
158 |
+
base_WER = wer(ref_text, openai_trancsription)
|
159 |
+
|
160 |
+
result = f'Tunned Model transciption: {tunned_transcription}\n'
|
161 |
+
result += f"Word error rate for the tunned model: {round(tunned_WER, 2)}\n"
|
162 |
+
|
163 |
+
# Call cosine sim for tuned model (this will print results)
|
164 |
+
cosine_sim_wer_single(ref_text, tunned_transcription)
|
165 |
+
|
166 |
+
result += f'\nBase Model transciption: {openai_trancsription}\n'
|
167 |
+
result += f"Word error rate for base-untunned model: {round(base_WER, 2)}\n"
|
168 |
+
|
169 |
+
# Call cosine sim for base model (this will print results)
|
170 |
+
cosine_sim_wer_single(ref_text, openai_trancsription)
|
171 |
+
|
172 |
+
return 'test_output.wav', result
|
173 |
+
|
174 |
+
# -------------------------------------------------------------------------------------------------------------------
|
175 |
+
# Add minimal Gradio wrapper
|
176 |
+
|
177 |
+
# Create a simple Gradio interface
|
178 |
+
demo = gr.Interface(
|
179 |
+
fn=full_loop, # Use your existing function without modifications
|
180 |
+
inputs=gr.Textbox(value="Kuna mambo kadhaa yanayoitajika kuzingatiwa wakati wa kufundisha modeli."),
|
181 |
+
outputs=[gr.Audio(), gr.Textbox()],
|
182 |
+
title="TTS-STT Evaluation"
|
183 |
+
)
|
184 |
+
|
185 |
+
# Launch the interface
|
186 |
+
if __name__ == "__main__":
|
187 |
+
demo.launch()
|