|
import gradio as gr |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from transformers import pipeline |
|
import plotly.express as px |
|
|
|
|
|
expense_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") |
|
|
|
|
|
def categorize_transaction_batch(descriptions): |
|
candidate_labels = ["Groceries", "Entertainment", "Rent", "Utilities", "Dining", "Transportation", "Shopping", "Others"] |
|
return [expense_classifier(description, candidate_labels)["labels"][0] for description in descriptions] |
|
|
|
|
|
def process_expenses(file): |
|
|
|
df = pd.read_csv(file.name) |
|
|
|
|
|
if 'Date' not in df.columns or 'Description' not in df.columns or 'Amount' not in df.columns: |
|
return "CSV file should contain 'Date', 'Description', and 'Amount' columns." |
|
|
|
|
|
df['Category'] = categorize_transaction_batch(df['Description'].tolist()) |
|
|
|
|
|
|
|
category_spending = df.groupby("Category")['Amount'].sum() |
|
fig1 = px.pie(category_spending, names=category_spending.index, values=category_spending.values, title="Category-wise Spending") |
|
|
|
|
|
df['Date'] = pd.to_datetime(df['Date']) |
|
df['Month'] = df['Date'].dt.to_period('M') |
|
monthly_spending = df.groupby('Month')['Amount'].sum() |
|
fig2 = px.line(monthly_spending, x=monthly_spending.index, y=monthly_spending.values, title="Monthly Spending Trends") |
|
|
|
|
|
category_list = df['Category'].unique() |
|
budget_dict = {category: 500 for category in category_list} |
|
budget_spending = {category: [budget_dict[category], category_spending.get(category, 0)] for category in category_list} |
|
budget_df = pd.DataFrame(budget_spending, index=["Budget", "Actual"]).T |
|
fig3 = px.bar(budget_df, x=budget_df.index, y=["Budget", "Actual"], title= |
|
|