engralimalik commited on
Commit
4a7d41a
·
verified ·
1 Parent(s): 67db8e9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -38
app.py CHANGED
@@ -5,66 +5,40 @@ import matplotlib.pyplot as plt
5
  from transformers import pipeline
6
  import plotly.express as px
7
 
8
- # Initialize the Hugging Face model for expense categorization
9
  expense_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
10
 
11
- # Function to categorize expenses
12
  def categorize_transaction_batch(descriptions):
13
  candidate_labels = ["Groceries", "Entertainment", "Rent", "Utilities", "Dining", "Transportation", "Shopping", "Others"]
14
  return [expense_classifier(description, candidate_labels)["labels"][0] for description in descriptions]
15
 
16
  # Function to process the uploaded CSV and generate visualizations
17
  def process_expenses(file):
 
18
  df = pd.read_csv(file.name)
19
-
20
- # Check required columns
21
  if 'Date' not in df.columns or 'Description' not in df.columns or 'Amount' not in df.columns:
22
  return "CSV file should contain 'Date', 'Description', and 'Amount' columns."
23
 
24
- # Categorize the expenses
25
  df['Category'] = categorize_transaction_batch(df['Description'].tolist())
26
 
27
- # Pie chart for Category-wise spending
 
28
  category_spending = df.groupby("Category")['Amount'].sum()
29
  fig1 = px.pie(category_spending, names=category_spending.index, values=category_spending.values, title="Category-wise Spending")
30
 
31
- # Monthly spending trends (Line plot)
32
  df['Date'] = pd.to_datetime(df['Date'])
33
  df['Month'] = df['Date'].dt.to_period('M')
34
  monthly_spending = df.groupby('Month')['Amount'].sum()
35
  fig2 = px.line(monthly_spending, x=monthly_spending.index, y=monthly_spending.values, title="Monthly Spending Trends")
36
 
37
- # Budget vs Actual Spending (Bar chart)
38
  category_list = df['Category'].unique()
39
- budget_dict = {category: 500 for category in category_list} # Set default budget of 500 for each category
40
  budget_spending = {category: [budget_dict[category], category_spending.get(category, 0)] for category in category_list}
41
  budget_df = pd.DataFrame(budget_spending, index=["Budget", "Actual"]).T
42
- fig3 = px.bar(budget_df, x=budget_df.index, y=["Budget", "Actual"], title="Budget vs Actual Spending")
43
-
44
- # Suggested savings
45
- savings_tips = []
46
- for category, actual in category_spending.items():
47
- if actual > budget_dict.get(category, 500):
48
- savings_tips.append(f"- **{category}**: Over budget by ${actual - budget_dict.get(category, 500)}. Consider reducing this expense.")
49
-
50
- return df.head(), fig1, fig2, fig3, savings_tips
51
-
52
- # Gradio interface definition
53
- inputs = gr.File(label="Upload Expense CSV")
54
- outputs = [
55
- gr.Dataframe(label="Categorized Expense Data"),
56
- gr.Plot(label="Category-wise Spending (Pie Chart)"),
57
- gr.Plot(label="Monthly Spending Trends (Line Chart)"),
58
- gr.Plot(label="Budget vs Actual Spending (Bar Chart)"),
59
- gr.Textbox(label="Savings Tips")
60
- ]
61
-
62
- # Launch Gradio interface
63
- gr.Interface(
64
- fn=process_expenses,
65
- inputs=inputs,
66
- outputs=outputs,
67
- live=True,
68
- title="Smart Expense Tracker",
69
- description="Upload your CSV of transactions, categorize them, and view insights like spending trends and budget analysis."
70
- ).launch() # Correct method name: launch() instead of launc
 
5
  from transformers import pipeline
6
  import plotly.express as px
7
 
8
+ # Initialize the Hugging Face model for expense categorization (use zero-shot classification)
9
  expense_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
10
 
11
+ # Batch categorization function for efficiency
12
  def categorize_transaction_batch(descriptions):
13
  candidate_labels = ["Groceries", "Entertainment", "Rent", "Utilities", "Dining", "Transportation", "Shopping", "Others"]
14
  return [expense_classifier(description, candidate_labels)["labels"][0] for description in descriptions]
15
 
16
  # Function to process the uploaded CSV and generate visualizations
17
  def process_expenses(file):
18
+ # Read CSV data
19
  df = pd.read_csv(file.name)
20
+
21
+ # Check if required columns are present
22
  if 'Date' not in df.columns or 'Description' not in df.columns or 'Amount' not in df.columns:
23
  return "CSV file should contain 'Date', 'Description', and 'Amount' columns."
24
 
25
+ # Categorize the expenses (using batch processing to minimize model calls)
26
  df['Category'] = categorize_transaction_batch(df['Description'].tolist())
27
 
28
+ # Create visualizations:
29
+ # 1. Pie chart for Category-wise spending
30
  category_spending = df.groupby("Category")['Amount'].sum()
31
  fig1 = px.pie(category_spending, names=category_spending.index, values=category_spending.values, title="Category-wise Spending")
32
 
33
+ # 2. Monthly spending trends (Line plot)
34
  df['Date'] = pd.to_datetime(df['Date'])
35
  df['Month'] = df['Date'].dt.to_period('M')
36
  monthly_spending = df.groupby('Month')['Amount'].sum()
37
  fig2 = px.line(monthly_spending, x=monthly_spending.index, y=monthly_spending.values, title="Monthly Spending Trends")
38
 
39
+ # 3. Budget vs Actual Spending (Bar chart)
40
  category_list = df['Category'].unique()
41
+ budget_dict = {category: 500 for category in category_list} # Default budget is 500 for each category
42
  budget_spending = {category: [budget_dict[category], category_spending.get(category, 0)] for category in category_list}
43
  budget_df = pd.DataFrame(budget_spending, index=["Budget", "Actual"]).T
44
+ fig3 = px.bar(budget_df, x=budget_df.index, y=["Budget", "Actual"], title=