File size: 1,283 Bytes
2c359f1 f10ec56 2c359f1 f10ec56 4a7d41a 2c359f1 f10ec56 4a7d41a 2c359f1 f10ec56 2c359f1 4a7d41a 2c359f1 4a7d41a f10ec56 2c359f1 4a7d41a 2c359f1 4a7d41a 3ce8ba3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from transformers import pipeline
import plotly.express as px
# Initialize the Hugging Face model for expense categorization (use zero-shot classification)
expense_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# Batch categorization function for efficiency
def categorize_transaction_batch(descriptions):
candidate_labels = ["Groceries", "Entertainment", "Rent", "Utilities", "Dining", "Transportation", "Shopping", "Others"]
return [expense_classifier(description, candidate_labels)["labels"][0] for description in descriptions]
# Function to process the uploaded CSV and generate visualizations
def process_expenses(file):
# Read CSV data
df = pd.read_csv(file.name)
# Check if required columns are present
if 'Date' not in df.columns or 'Description' not in df.columns or 'Amount' not in df.columns:
return "CSV file should contain 'Date', 'Description', and 'Amount' columns."
# Categorize the expenses (using batch processing to minimize model calls)
df['Category'] = categorize_transaction_batch(df['Description'].tolist())
# Create visualizations:
# 1. Pie chart for Category-wise spendin
|