fix
Browse files- app.py +7 -4
- requirements.txt +2 -1
app.py
CHANGED
@@ -35,13 +35,16 @@ class ReviewAnalysisApp:
|
|
35 |
def setup_models(self):
|
36 |
"""Modelleri yükle ve hazırla"""
|
37 |
# Sentiment model setup
|
38 |
-
self.device = "
|
39 |
print(f"Cihaz: {self.device}")
|
40 |
|
41 |
model_name = "savasy/bert-base-turkish-sentiment-cased"
|
42 |
self.sentiment_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
self.sentiment_model = (
|
44 |
-
AutoModelForSequenceClassification.from_pretrained(
|
|
|
|
|
|
|
45 |
.to(self.device)
|
46 |
.to(torch.float32)
|
47 |
)
|
@@ -52,8 +55,8 @@ class ReviewAnalysisApp:
|
|
52 |
self.summary_pipe = pipeline(
|
53 |
"text-generation",
|
54 |
model=model_id,
|
55 |
-
torch_dtype=
|
56 |
-
|
57 |
)
|
58 |
|
59 |
self.terminators = [
|
|
|
35 |
def setup_models(self):
|
36 |
"""Modelleri yükle ve hazırla"""
|
37 |
# Sentiment model setup
|
38 |
+
self.device = "cpu" # Spaces'de CPU kullanacağız
|
39 |
print(f"Cihaz: {self.device}")
|
40 |
|
41 |
model_name = "savasy/bert-base-turkish-sentiment-cased"
|
42 |
self.sentiment_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
self.sentiment_model = (
|
44 |
+
AutoModelForSequenceClassification.from_pretrained(
|
45 |
+
model_name,
|
46 |
+
low_cpu_mem_usage=False # CPU için False yapıyoruz
|
47 |
+
)
|
48 |
.to(self.device)
|
49 |
.to(torch.float32)
|
50 |
)
|
|
|
55 |
self.summary_pipe = pipeline(
|
56 |
"text-generation",
|
57 |
model=model_id,
|
58 |
+
torch_dtype=torch.float32,
|
59 |
+
device=self.device, # device_map yerine device kullanıyoruz
|
60 |
)
|
61 |
|
62 |
self.terminators = [
|
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ selenium
|
|
9 |
webdriver_manager
|
10 |
tqdm
|
11 |
regex
|
12 |
-
scikit-learn
|
|
|
|
9 |
webdriver_manager
|
10 |
tqdm
|
11 |
regex
|
12 |
+
scikit-learn
|
13 |
+
accelerate>=0.26.0
|