add files
Browse files- app.py +317 -0
- requirements.txt +12 -0
- scrape/trendyol_scraper.py +89 -0
app.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import os
|
6 |
+
import shutil
|
7 |
+
from scrape.trendyol_scraper import scrape_reviews
|
8 |
+
import torch
|
9 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
10 |
+
import re
|
11 |
+
from tqdm import tqdm
|
12 |
+
import nltk
|
13 |
+
from nltk.corpus import stopwords
|
14 |
+
|
15 |
+
class ReviewAnalysisApp:
|
16 |
+
def __init__(self):
|
17 |
+
self.setup_models()
|
18 |
+
self.setup_stopwords()
|
19 |
+
|
20 |
+
def setup_stopwords(self):
|
21 |
+
"""Türkçe stopwords'leri yükle"""
|
22 |
+
try:
|
23 |
+
nltk.data.find('corpora/stopwords')
|
24 |
+
except LookupError:
|
25 |
+
nltk.download('stopwords')
|
26 |
+
|
27 |
+
self.turkish_stopwords = set(stopwords.words('turkish'))
|
28 |
+
# Ekstra stopwords ekle
|
29 |
+
self.logistics_seller_words = {
|
30 |
+
'kargo', 'kargocu', 'paket', 'gönderi', 'satıcı', 'mağaza',
|
31 |
+
'sipariş', 'teslimat', 'gönderim', 'kutu', 'paketleme'
|
32 |
+
}
|
33 |
+
self.turkish_stopwords.update(self.logistics_seller_words)
|
34 |
+
|
35 |
+
def setup_models(self):
|
36 |
+
"""Modelleri yükle ve hazırla"""
|
37 |
+
# Sentiment model setup
|
38 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
+
print(f"Cihaz: {self.device}")
|
40 |
+
|
41 |
+
model_name = "savasy/bert-base-turkish-sentiment-cased"
|
42 |
+
self.sentiment_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
+
self.sentiment_model = (
|
44 |
+
AutoModelForSequenceClassification.from_pretrained(model_name)
|
45 |
+
.to(self.device)
|
46 |
+
.to(torch.float32)
|
47 |
+
)
|
48 |
+
|
49 |
+
# Summary model setup
|
50 |
+
print("Trendyol-LLM modeli yükleniyor...")
|
51 |
+
model_id = "Trendyol/Trendyol-LLM-8b-chat-v2.0"
|
52 |
+
self.summary_pipe = pipeline(
|
53 |
+
"text-generation",
|
54 |
+
model=model_id,
|
55 |
+
torch_dtype="auto",
|
56 |
+
device_map='auto',
|
57 |
+
)
|
58 |
+
|
59 |
+
self.terminators = [
|
60 |
+
self.summary_pipe.tokenizer.eos_token_id,
|
61 |
+
self.summary_pipe.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
62 |
+
]
|
63 |
+
|
64 |
+
self.sampling_params = {
|
65 |
+
"do_sample": True,
|
66 |
+
"temperature": 0.3,
|
67 |
+
"top_k": 50,
|
68 |
+
"top_p": 0.9,
|
69 |
+
"repetition_penalty": 1.1
|
70 |
+
}
|
71 |
+
|
72 |
+
def preprocess_text(self, text):
|
73 |
+
"""Metin ön işleme"""
|
74 |
+
if isinstance(text, str):
|
75 |
+
# Küçük harfe çevir
|
76 |
+
text = text.lower()
|
77 |
+
# Özel karakterleri temizle
|
78 |
+
text = re.sub(r'[^\w\s]', '', text)
|
79 |
+
# Sayıları temizle
|
80 |
+
text = re.sub(r'\d+', '', text)
|
81 |
+
# Fazla boşlukları temizle
|
82 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
83 |
+
# Stop words'leri çıkar
|
84 |
+
words = text.split()
|
85 |
+
words = [word for word in words if word not in self.turkish_stopwords]
|
86 |
+
return ' '.join(words)
|
87 |
+
return ''
|
88 |
+
|
89 |
+
def filter_product_reviews(self, df):
|
90 |
+
"""Ürün ile ilgili olmayan yorumları filtrele"""
|
91 |
+
def is_product_review(text):
|
92 |
+
if not isinstance(text, str):
|
93 |
+
return False
|
94 |
+
return not any(word in text.lower() for word in self.logistics_seller_words)
|
95 |
+
|
96 |
+
filtered_df = df[df['Yorum'].apply(is_product_review)].copy()
|
97 |
+
|
98 |
+
print(f"\nFiltreleme İstatistikleri:")
|
99 |
+
print(f"Toplam yorum sayısı: {len(df)}")
|
100 |
+
print(f"Ürün yorumu sayısı: {len(filtered_df)}")
|
101 |
+
print(f"Filtrelenen yorum sayısı: {len(df) - len(filtered_df)}")
|
102 |
+
print(f"Filtreleme oranı: {((len(df) - len(filtered_df)) / len(df) * 100):.2f}%")
|
103 |
+
|
104 |
+
return filtered_df
|
105 |
+
|
106 |
+
def predict_sentiment(self, text):
|
107 |
+
"""Tek bir yorum için sentiment analizi yap"""
|
108 |
+
# Önce metni temizle
|
109 |
+
text = self.preprocess_text(text)
|
110 |
+
|
111 |
+
if not text:
|
112 |
+
return {"label": "nötr", "score": 0.5}
|
113 |
+
|
114 |
+
inputs = self.sentiment_tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
115 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
116 |
+
|
117 |
+
with torch.no_grad():
|
118 |
+
outputs = self.sentiment_model(**inputs)
|
119 |
+
scores = torch.nn.functional.softmax(outputs.logits, dim=1)
|
120 |
+
|
121 |
+
positive_score = scores[0][1].item()
|
122 |
+
label = "pozitif" if positive_score > 0.5 else "negatif"
|
123 |
+
|
124 |
+
return {"label": label, "score": positive_score}
|
125 |
+
|
126 |
+
def analyze_reviews(self, df):
|
127 |
+
"""Tüm yorumları analiz et"""
|
128 |
+
print("\nSentiment analizi başlatılıyor...")
|
129 |
+
|
130 |
+
# Önce ürün ile ilgili olmayan yorumları filtrele
|
131 |
+
df = self.filter_product_reviews(df)
|
132 |
+
|
133 |
+
# Sentiment analizi
|
134 |
+
results = []
|
135 |
+
for text in tqdm(df['Yorum'], desc="Yorumlar analiz ediliyor"):
|
136 |
+
sentiment = self.predict_sentiment(text)
|
137 |
+
results.append(sentiment)
|
138 |
+
|
139 |
+
df['sentiment_score'] = [r['score'] for r in results]
|
140 |
+
df['sentiment_label'] = [r['label'] for r in results]
|
141 |
+
|
142 |
+
return df
|
143 |
+
|
144 |
+
def generate_summary(self, df):
|
145 |
+
"""Yorumları özetle"""
|
146 |
+
# Temel istatistikler
|
147 |
+
avg_rating = df['Yıldız Sayısı'].mean()
|
148 |
+
total_reviews = len(df)
|
149 |
+
|
150 |
+
# Sentiment bazlı gruplandırma
|
151 |
+
positive_comments = df[df['sentiment_label'] == 'pozitif']['Yorum'].tolist()
|
152 |
+
negative_comments = df[df['sentiment_label'] == 'negatif']['Yorum'].tolist()
|
153 |
+
positive_count = len(positive_comments)
|
154 |
+
negative_count = len(negative_comments)
|
155 |
+
|
156 |
+
# Yıldız dağılımı
|
157 |
+
star_dist = df['Yıldız Sayısı'].value_counts().sort_index()
|
158 |
+
star_dist_text = "\n".join([f"{star} yıldız: {count} yorum" for star, count in star_dist.items()])
|
159 |
+
|
160 |
+
# En sık geçen kelimeler (stopwords temizlenmiş)
|
161 |
+
all_words = []
|
162 |
+
for text in df['Yorum']:
|
163 |
+
cleaned_text = self.preprocess_text(text)
|
164 |
+
if cleaned_text:
|
165 |
+
all_words.extend(cleaned_text.split())
|
166 |
+
|
167 |
+
from collections import Counter
|
168 |
+
word_freq = Counter(all_words).most_common(10)
|
169 |
+
frequent_words = ", ".join([f"{word} ({count} kez)" for word, count in word_freq])
|
170 |
+
|
171 |
+
# Prompt hazırlama
|
172 |
+
prompt = f"""Bu ürün için yapılan {total_reviews} yorumun detaylı analizi:
|
173 |
+
|
174 |
+
1. Genel Değerlendirme:
|
175 |
+
- Ortalama puan: {avg_rating:.1f}/5
|
176 |
+
- Toplam yorum sayısı: {total_reviews}
|
177 |
+
- Pozitif yorum sayısı: {positive_count}
|
178 |
+
- Negatif yorum sayısı: {negative_count}
|
179 |
+
|
180 |
+
2. Yıldız Dağılımı:
|
181 |
+
{star_dist_text}
|
182 |
+
|
183 |
+
3. En Sık Kullanılan Kelimeler:
|
184 |
+
{frequent_words}
|
185 |
+
|
186 |
+
4. Örnek Yorumlar:
|
187 |
+
Pozitif yorumlardan:
|
188 |
+
{' | '.join(positive_comments[:3])}
|
189 |
+
|
190 |
+
Negatif yorumlardan:
|
191 |
+
{' | '.join(negative_comments[:3])}
|
192 |
+
|
193 |
+
Yukarıdaki verilere dayanarak:
|
194 |
+
1. Ürünün genel kalitesi ve kullanıcı memnuniyeti hakkında
|
195 |
+
2. Ürünün güçlü ve zayıf yönleri hakkında
|
196 |
+
3. Potansiyel alıcılar için önemli noktalar hakkında
|
197 |
+
kapsamlı bir değerlendirme yazar mısın?
|
198 |
+
"""
|
199 |
+
|
200 |
+
# Özet oluştur
|
201 |
+
response = self.summary_pipe(
|
202 |
+
prompt,
|
203 |
+
max_new_tokens=800, # Daha uzun özet için
|
204 |
+
eos_token_id=self.terminators,
|
205 |
+
**self.sampling_params
|
206 |
+
)[0]['generated_text']
|
207 |
+
|
208 |
+
# Prompt'u çıkar ve sadece özeti döndür
|
209 |
+
summary = response[len(prompt):].strip()
|
210 |
+
|
211 |
+
# Özeti formatla
|
212 |
+
formatted_summary = f"""📊 ÜRÜN ANAL�Z RAPORU
|
213 |
+
|
214 |
+
⭐ Ortalama Puan: {avg_rating:.1f}/5
|
215 |
+
📝 Toplam Yorum: {total_reviews}
|
216 |
+
✅ Pozitif Yorum: {positive_count}
|
217 |
+
❌ Negatif Yorum: {negative_count}
|
218 |
+
|
219 |
+
🔍 DETAYLI ANALİZ:
|
220 |
+
{summary}"""
|
221 |
+
|
222 |
+
return formatted_summary
|
223 |
+
|
224 |
+
def analyze_url(self, url):
|
225 |
+
try:
|
226 |
+
# Temizlik
|
227 |
+
if os.path.exists("data"):
|
228 |
+
shutil.rmtree("data")
|
229 |
+
|
230 |
+
# Yorumları çek
|
231 |
+
df = scrape_reviews(url)
|
232 |
+
|
233 |
+
if df.empty:
|
234 |
+
return "Yorumlar çekilemedi. Lütfen URL'yi kontrol edin.", None, None, None
|
235 |
+
|
236 |
+
# Sentiment analizi yap
|
237 |
+
analyzed_df = self.analyze_reviews(df)
|
238 |
+
|
239 |
+
# Özet oluştur
|
240 |
+
summary = self.generate_summary(analyzed_df)
|
241 |
+
|
242 |
+
# Grafikleri oluştur
|
243 |
+
fig1 = self.create_sentiment_distribution(analyzed_df)
|
244 |
+
fig2 = self.create_rating_distribution(analyzed_df)
|
245 |
+
fig3 = self.create_sentiment_by_rating(analyzed_df)
|
246 |
+
|
247 |
+
return summary, fig1, fig2, fig3
|
248 |
+
|
249 |
+
except Exception as e:
|
250 |
+
return f"Bir hata oluştu: {str(e)}", None, None, None
|
251 |
+
|
252 |
+
finally:
|
253 |
+
# Temizlik
|
254 |
+
if os.path.exists("data"):
|
255 |
+
shutil.rmtree("data")
|
256 |
+
|
257 |
+
def create_sentiment_distribution(self, df):
|
258 |
+
fig = px.pie(df,
|
259 |
+
names='sentiment_label',
|
260 |
+
title='Duygu Analizi Dağılımı')
|
261 |
+
return fig
|
262 |
+
|
263 |
+
def create_rating_distribution(self, df):
|
264 |
+
fig = px.bar(df['Yıldız Sayısı'].value_counts().sort_index(),
|
265 |
+
title='Yıldız Dağılımı')
|
266 |
+
fig.update_layout(xaxis_title='Yıldız Sayısı',
|
267 |
+
yaxis_title='Yorum Sayısı')
|
268 |
+
return fig
|
269 |
+
|
270 |
+
def create_sentiment_by_rating(self, df):
|
271 |
+
avg_sentiment = df.groupby('Yıldız Sayısı')['sentiment_score'].mean()
|
272 |
+
fig = px.line(avg_sentiment,
|
273 |
+
title='Yıldız Sayısına Göre Ortalama Sentiment Skoru')
|
274 |
+
fig.update_layout(xaxis_title='Yıldız Sayısı',
|
275 |
+
yaxis_title='Ortalama Sentiment Skoru')
|
276 |
+
return fig
|
277 |
+
|
278 |
+
def create_interface():
|
279 |
+
app = ReviewAnalysisApp()
|
280 |
+
|
281 |
+
with gr.Blocks(theme=gr.themes.Soft()) as interface:
|
282 |
+
gr.Markdown("# Trendyol Yorum Analizi")
|
283 |
+
|
284 |
+
with gr.Row():
|
285 |
+
url_input = gr.Textbox(
|
286 |
+
label="Trendyol Ürün Yorumları URL'si",
|
287 |
+
placeholder="https://www.trendyol.com/..."
|
288 |
+
)
|
289 |
+
|
290 |
+
analyze_btn = gr.Button("Analiz Et")
|
291 |
+
|
292 |
+
with gr.Row():
|
293 |
+
with gr.Column(scale=1):
|
294 |
+
summary_output = gr.Textbox(
|
295 |
+
label="Özet",
|
296 |
+
lines=10
|
297 |
+
)
|
298 |
+
|
299 |
+
with gr.Column(scale=2):
|
300 |
+
with gr.Tab("Duygu Analizi"):
|
301 |
+
sentiment_dist = gr.Plot()
|
302 |
+
with gr.Tab("Yıldız Dağılımı"):
|
303 |
+
rating_dist = gr.Plot()
|
304 |
+
with gr.Tab("Sentiment-Yıldız İlişkisi"):
|
305 |
+
sentiment_rating = gr.Plot()
|
306 |
+
|
307 |
+
analyze_btn.click(
|
308 |
+
fn=app.analyze_url,
|
309 |
+
inputs=[url_input],
|
310 |
+
outputs=[summary_output, sentiment_dist, rating_dist, sentiment_rating]
|
311 |
+
)
|
312 |
+
|
313 |
+
return interface
|
314 |
+
|
315 |
+
if __name__ == "__main__":
|
316 |
+
interface = create_interface()
|
317 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
numpy
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
nltk
|
6 |
+
plotly
|
7 |
+
gradio
|
8 |
+
selenium
|
9 |
+
webdriver_manager
|
10 |
+
tqdm
|
11 |
+
regex
|
12 |
+
scikit-learn
|
scrape/trendyol_scraper.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from selenium import webdriver
|
2 |
+
from selenium.webdriver.chrome.service import Service
|
3 |
+
from selenium.webdriver.common.by import By
|
4 |
+
from selenium.webdriver.support.ui import WebDriverWait
|
5 |
+
from selenium.webdriver.support import expected_conditions as EC
|
6 |
+
import time
|
7 |
+
import pandas as pd
|
8 |
+
import os
|
9 |
+
|
10 |
+
def scrape_reviews(url):
|
11 |
+
# Create data directory if it doesn't exist
|
12 |
+
data_directory = "data"
|
13 |
+
if not os.path.exists(data_directory):
|
14 |
+
os.makedirs(data_directory)
|
15 |
+
|
16 |
+
def comprehensive_scroll(driver):
|
17 |
+
last_height = driver.execute_script("return document.body.scrollHeight")
|
18 |
+
while True:
|
19 |
+
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
|
20 |
+
time.sleep(3)
|
21 |
+
new_height = driver.execute_script("return document.body.scrollHeight")
|
22 |
+
if new_height == last_height:
|
23 |
+
break
|
24 |
+
last_height = new_height
|
25 |
+
|
26 |
+
chrome_options = webdriver.ChromeOptions()
|
27 |
+
chrome_options.add_argument('--headless')
|
28 |
+
chrome_options.add_argument('--disable-gpu')
|
29 |
+
chrome_options.add_argument('--no-sandbox')
|
30 |
+
chrome_options.add_argument('--disable-dev-shm-usage')
|
31 |
+
chrome_options.add_argument("--window-size=1920,1080")
|
32 |
+
|
33 |
+
try:
|
34 |
+
service = Service() # Hugging Face Spaces için path belirtmeye gerek yok
|
35 |
+
driver = webdriver.Chrome(service=service, options=chrome_options)
|
36 |
+
driver.get(url)
|
37 |
+
|
38 |
+
WebDriverWait(driver, 10).until(
|
39 |
+
EC.element_to_be_clickable((By.ID, 'onetrust-accept-btn-handler'))
|
40 |
+
).click()
|
41 |
+
|
42 |
+
comprehensive_scroll(driver)
|
43 |
+
|
44 |
+
comment_elements = driver.find_elements(By.XPATH, '/html/body/div[1]/div[4]/div/div/div/div/div[3]/div/div/div[3]/div[2]/div')
|
45 |
+
total_comments = len(comment_elements)
|
46 |
+
|
47 |
+
data = []
|
48 |
+
for i in range(1, total_comments + 1):
|
49 |
+
try:
|
50 |
+
username_xpath = f'/html/body/div[1]/div[4]/div/div/div/div/div[3]/div/div/div[3]/div[2]/div[{i}]/div[1]/div[2]/div[1]'
|
51 |
+
username = driver.find_element(By.XPATH, username_xpath).text
|
52 |
+
except:
|
53 |
+
username = "N/A"
|
54 |
+
|
55 |
+
try:
|
56 |
+
comment_xpath = f'/html/body/div[1]/div[4]/div/div/div/div/div[3]/div/div/div[3]/div[2]/div[{i}]/div[2]/p'
|
57 |
+
comment = driver.find_element(By.XPATH, comment_xpath).text
|
58 |
+
except:
|
59 |
+
comment = "N/A"
|
60 |
+
|
61 |
+
try:
|
62 |
+
date_xpath = f'/html/body/div[1]/div[4]/div/div/div/div/div[3]/div/div/div[3]/div[2]/div[{i}]/div[1]/div[2]/div[2]'
|
63 |
+
date = driver.find_element(By.XPATH, date_xpath).text
|
64 |
+
except:
|
65 |
+
date = "N/A"
|
66 |
+
|
67 |
+
try:
|
68 |
+
star_xpath_base = f'/html/body/div[1]/div[4]/div/div/div/div/div[3]/div/div/div[3]/div[2]/div[{i}]/div[1]/div[1]/div'
|
69 |
+
full_stars = driver.find_elements(By.XPATH, f"{star_xpath_base}/div[@class='star-w']/div[@class='full'][@style='width: 100%; max-width: 100%;']")
|
70 |
+
star_count = len(full_stars)
|
71 |
+
except:
|
72 |
+
star_count = 0
|
73 |
+
|
74 |
+
data.append({
|
75 |
+
"Kullanıcı_id": i,
|
76 |
+
"Kullanıcı Adı": username,
|
77 |
+
"Yorum": comment,
|
78 |
+
"Tarih": date,
|
79 |
+
"Yıldız Sayısı": star_count
|
80 |
+
})
|
81 |
+
|
82 |
+
return pd.DataFrame(data)
|
83 |
+
|
84 |
+
except Exception as e:
|
85 |
+
print(f"Hata oluştu: {str(e)}")
|
86 |
+
return pd.DataFrame()
|
87 |
+
|
88 |
+
finally:
|
89 |
+
driver.quit()
|