Pijush2023 commited on
Commit
3dc532d
·
verified ·
1 Parent(s): 4a2e33d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +742 -31
app.py CHANGED
@@ -1,3 +1,727 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import requests
3
  import os
@@ -232,7 +956,7 @@ Helpful Answer:"""
232
  # Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
233
  # {context}
234
  # Question: {question}
235
- # Helpful Answer:"""
236
 
237
  template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 16th july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
238
  memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
@@ -360,7 +1084,7 @@ def generate_map(location_names):
360
  if geocode_result:
361
  location = geocode_result[0]['geometry']['location']
362
  folium.Marker(
363
- [location['lat'], location['lng']],
364
  tooltip=f"{geocode_result[0]['formatted_address']}"
365
  ).add_to(m)
366
 
@@ -456,27 +1180,6 @@ pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=proce
456
 
457
  base_audio_drive = "/data/audio"
458
 
459
- # def transcribe_function(stream, new_chunk):
460
- # try:
461
- # sr, y = new_chunk[0], new_chunk[1]
462
- # except TypeError:
463
- # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
464
- # return stream, "", None
465
-
466
- # y = y.astype(np.float32) / np.max(np.abs(y))
467
-
468
- # if stream is not None:
469
- # stream = np.concatenate([stream, y])
470
- # else:
471
- # stream = y
472
-
473
- # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
474
-
475
- # full_text = result.get("text","")
476
-
477
- # return stream, full_text, result
478
-
479
-
480
  def transcribe_function(stream, new_chunk):
481
  sr, y = new_chunk[0], new_chunk[1]
482
  y = y.astype(np.float32) / np.max(np.abs(y))
@@ -695,16 +1398,23 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
695
  audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
696
  audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
697
 
 
 
 
698
 
699
-
700
-
701
-
702
-
 
703
 
704
- # with gr.Column():
705
- # weather_output = gr.HTML(value=fetch_local_weather())
706
- # news_output = gr.HTML(value=fetch_local_news())
707
- # news_output = gr.HTML(value=fetch_local_events())
 
 
 
708
 
709
 
710
  with gr.Column():
@@ -732,3 +1442,4 @@ demo.launch(share=True)
732
 
733
 
734
 
 
 
1
+ # import gradio as gr
2
+ # import requests
3
+ # import os
4
+ # import time
5
+ # import re
6
+ # import logging
7
+ # import tempfile
8
+ # import folium
9
+ # import concurrent.futures
10
+ # import torch
11
+ # from PIL import Image
12
+ # from datetime import datetime
13
+ # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
14
+ # from googlemaps import Client as GoogleMapsClient
15
+ # from gtts import gTTS
16
+ # from diffusers import StableDiffusionPipeline
17
+ # from langchain_openai import OpenAIEmbeddings, ChatOpenAI
18
+ # from langchain_pinecone import PineconeVectorStore
19
+ # from langchain.prompts import PromptTemplate
20
+ # from langchain.chains import RetrievalQA
21
+ # from langchain.chains.conversation.memory import ConversationBufferWindowMemory
22
+ # from langchain.agents import Tool, initialize_agent
23
+ # from huggingface_hub import login
24
+ # from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
25
+ # from parler_tts import ParlerTTSForConditionalGeneration
26
+ # from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
27
+ # from scipy.io.wavfile import write as write_wav
28
+ # from pydub import AudioSegment
29
+ # from string import punctuation
30
+ # import librosa
31
+ # from pathlib import Path
32
+ # import torchaudio
33
+
34
+ # # Check if the token is already set in the environment variables
35
+ # hf_token = os.getenv("HF_TOKEN")
36
+ # if hf_token is None:
37
+ # print("Please set your Hugging Face token in the environment variables.")
38
+ # else:
39
+ # login(token=hf_token)
40
+
41
+ # logging.basicConfig(level=logging.DEBUG)
42
+
43
+ # embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
44
+
45
+ # from pinecone import Pinecone
46
+ # pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
47
+
48
+ # index_name = "birminghumsummary1"
49
+ # vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
50
+ # retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
51
+
52
+ # chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
53
+
54
+ # conversational_memory = ConversationBufferWindowMemory(
55
+ # memory_key='chat_history',
56
+ # k=10,
57
+ # return_messages=True
58
+ # )
59
+
60
+ # def get_current_time_and_date():
61
+ # now = datetime.now()
62
+ # return now.strftime("%Y-%m-%d %H:%M:%S")
63
+
64
+ # current_time_and_date = get_current_time_and_date()
65
+
66
+
67
+
68
+ # def fetch_local_events():
69
+
70
+
71
+ # api_key = os.environ['SERP_API']
72
+ # url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
73
+ # response = requests.get(url)
74
+ # if response.status_code == 200:
75
+ # events_results = response.json().get("events_results", [])
76
+ # events_html = """
77
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
78
+ # <style>
79
+ # table {
80
+ # font-family: 'Verdana', sans-serif;
81
+ # color: #333;
82
+ # border-collapse: collapse;
83
+ # width: 100%;
84
+ # }
85
+ # th, td {
86
+ # border: 1px solid #fff !important;
87
+ # padding: 8px;
88
+ # }
89
+ # th {
90
+ # background-color: #f2f2f2;
91
+ # color: #333;
92
+ # text-align: left;
93
+ # }
94
+ # tr:hover {
95
+ # background-color: #f5f5f5;
96
+ # }
97
+ # .event-link {
98
+ # color: #1E90FF;
99
+ # text-decoration: none;
100
+ # }
101
+ # .event-link:hover {
102
+ # text-decoration: underline;
103
+ # }
104
+ # </style>
105
+ # <table>
106
+ # <tr>
107
+ # <th>Title</th>
108
+ # <th>Date and Time</th>
109
+ # <th>Location</th>
110
+ # </tr>
111
+ # """
112
+ # for event in events_results:
113
+ # title = event.get("title", "No title")
114
+ # date_info = event.get("date", {})
115
+ # date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
116
+ # location = event.get("address", "No location")
117
+ # if isinstance(location, list):
118
+ # location = " ".join(location)
119
+ # location = location.replace("[", "").replace("]", "")
120
+ # link = event.get("link", "#")
121
+ # events_html += f"""
122
+ # <tr>
123
+ # <td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
124
+ # <td>{date}</td>
125
+ # <td>{location}</td>
126
+ # </tr>
127
+ # """
128
+ # events_html += "</table>"
129
+ # return events_html
130
+ # else:
131
+ # return "<p>Failed to fetch local events</p>"
132
+
133
+
134
+
135
+
136
+ # def fetch_local_weather():
137
+ # try:
138
+ # api_key = os.environ['WEATHER_API']
139
+ # url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
140
+ # response = requests.get(url)
141
+ # response.raise_for_status()
142
+ # jsonData = response.json()
143
+
144
+ # current_conditions = jsonData.get("currentConditions", {})
145
+ # temp_celsius = current_conditions.get("temp", "N/A")
146
+
147
+ # if temp_celsius != "N/A":
148
+ # temp_fahrenheit = int((temp_celsius * 9/5) + 32)
149
+ # else:
150
+ # temp_fahrenheit = "N/A"
151
+
152
+ # condition = current_conditions.get("conditions", "N/A")
153
+ # humidity = current_conditions.get("humidity", "N/A")
154
+
155
+ # weather_html = f"""
156
+ # <div class="weather-theme">
157
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
158
+ # <div class="weather-content">
159
+ # <div class="weather-icon">
160
+ # <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
161
+ # </div>
162
+ # <div class="weather-details">
163
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
164
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
165
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
166
+ # </div>
167
+ # </div>
168
+ # </div>
169
+ # <style>
170
+ # .weather-theme {{
171
+ # animation: backgroundAnimation 10s infinite alternate;
172
+ # border-radius: 10px;
173
+ # padding: 10px;
174
+ # margin-bottom: 15px;
175
+ # background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
176
+ # background-size: 400% 400%;
177
+ # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
178
+ # transition: box-shadow 0.3s ease, background-color 0.3s ease;
179
+ # }}
180
+ # .weather-theme:hover {{
181
+ # box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
182
+ # background-position: 100% 100%;
183
+ # }}
184
+ # @keyframes backgroundAnimation {{
185
+ # 0% {{ background-position: 0% 50%; }}
186
+ # 100% {{ background-position: 100% 50%; }}
187
+ # }}
188
+ # .weather-content {{
189
+ # display: flex;
190
+ # align-items: center;
191
+ # }}
192
+ # .weather-icon {{
193
+ # flex: 1;
194
+ # }}
195
+ # .weather-details {{
196
+ # flex: 3;
197
+ # }}
198
+ # </style>
199
+ # """
200
+ # return weather_html
201
+ # except requests.exceptions.RequestException as e:
202
+ # return f"<p>Failed to fetch local weather: {e}</p>"
203
+
204
+ # def get_weather_icon(condition):
205
+ # condition_map = {
206
+ # "Clear": "c01d",
207
+ # "Partly Cloudy": "c02d",
208
+ # "Cloudy": "c03d",
209
+ # "Overcast": "c04d",
210
+ # "Mist": "a01d",
211
+ # "Patchy rain possible": "r01d",
212
+ # "Light rain": "r02d",
213
+ # "Moderate rain": "r03d",
214
+ # "Heavy rain": "r04d",
215
+ # "Snow": "s01d",
216
+ # "Thunderstorm": "t01d",
217
+ # "Fog": "a05d",
218
+ # }
219
+ # return condition_map.get(condition, "c04d")
220
+
221
+ # template1 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on weather being a sunny bright day and the today's date is 1st july 2024, use the following pieces of context,
222
+ # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
223
+ # Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
224
+ # event type and description.And also add this Birmingham,AL at the end of each address, Always say "It was my pleasure!" at the end of the answer.
225
+ # {context}
226
+ # Question: {question}
227
+ # Helpful Answer:"""
228
+
229
+
230
+ # # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
231
+ # # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
232
+ # # Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
233
+ # # {context}
234
+ # # Question: {question}
235
+ # # Helpful Answer:"""
236
+
237
+ # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 16th july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
238
+ # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
239
+ # Keep the answer short ,sweet and crisp and in one shot. Always say "It was my pleasure!" at the end of the answer.
240
+ # {context}
241
+ # Question: {question}
242
+ # Helpful Answer:"""
243
+
244
+ # QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
245
+ # QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
246
+
247
+ # def build_qa_chain(prompt_template):
248
+ # qa_chain = RetrievalQA.from_chain_type(
249
+ # llm=chat_model,
250
+ # chain_type="stuff",
251
+ # retriever=retriever,
252
+ # chain_type_kwargs={"prompt": prompt_template}
253
+ # )
254
+ # tools = [
255
+ # Tool(
256
+ # name='Knowledge Base',
257
+ # func=qa_chain,
258
+ # description='Use this tool when answering general knowledge queries to get more information about the topic'
259
+ # )
260
+ # ]
261
+ # return qa_chain, tools
262
+
263
+ # def initialize_agent_with_prompt(prompt_template):
264
+ # qa_chain, tools = build_qa_chain(prompt_template)
265
+ # agent = initialize_agent(
266
+ # agent='chat-conversational-react-description',
267
+ # tools=tools,
268
+ # llm=chat_model,
269
+ # verbose=False,
270
+ # max_iteration=5,
271
+ # early_stopping_method='generate',
272
+ # memory=conversational_memory
273
+ # )
274
+ # return agent
275
+
276
+
277
+ # def generate_answer(message, choice):
278
+ # logging.debug(f"generate_answer called with prompt_choice: {choice}")
279
+
280
+ # if choice == "Details":
281
+ # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
282
+ # elif choice == "Conversational":
283
+ # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
284
+ # else:
285
+ # logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
286
+ # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
287
+ # response = agent(message)
288
+
289
+ # addresses = extract_addresses(response['output'])
290
+ # return response['output'], addresses
291
+
292
+
293
+
294
+ # def bot(history, choice, tts_choice, state):
295
+ # if not history:
296
+ # return history
297
+ # response, addresses = generate_answer(history[-1][0], choice)
298
+ # history[-1][1] = ""
299
+
300
+ # with concurrent.futures.ThreadPoolExecutor() as executor:
301
+ # if tts_choice == "Alpha":
302
+ # audio_future = executor.submit(generate_audio_elevenlabs, response)
303
+ # elif tts_choice == "Beta":
304
+ # audio_future = executor.submit(generate_audio_parler_tts, response)
305
+ # elif tts_choice == "Gamma":
306
+ # audio_future = executor.submit(generate_audio_mars5, response)
307
+
308
+ # for character in response:
309
+ # history[-1][1] += character
310
+ # time.sleep(0.05)
311
+ # yield history, None
312
+
313
+ # audio_path = audio_future.result()
314
+ # yield history, audio_path
315
+
316
+ # def add_message(history, message):
317
+ # history.append((message, None))
318
+ # return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
319
+
320
+
321
+
322
+ # def print_like_dislike(x: gr.LikeData):
323
+ # print(x.index, x.value, x.liked)
324
+
325
+ # def extract_addresses(response):
326
+ # if not isinstance(response, str):
327
+ # response = str(response)
328
+ # address_patterns = [
329
+ # r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
330
+ # r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
331
+ # r'([A-Z].*,\sAL\s\d{5})',
332
+ # r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
333
+ # r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
334
+ # r'(\d{2}.*\sStreets)',
335
+ # r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
336
+ # r'([a-zA-Z]\s Birmingham)',
337
+ # r'([a-zA-Z].*,\sBirmingham,\sAL)',
338
+ # r'(^Birmingham,AL$)'
339
+ # ]
340
+ # addresses = []
341
+ # for pattern in address_patterns:
342
+ # addresses.extend(re.findall(pattern, response))
343
+ # return addresses
344
+
345
+ # all_addresses = []
346
+
347
+
348
+
349
+ # def generate_map(location_names):
350
+ # global all_addresses
351
+ # all_addresses.extend(location_names)
352
+
353
+ # api_key = os.environ['GOOGLEMAPS_API_KEY']
354
+ # gmaps = GoogleMapsClient(key=api_key)
355
+
356
+ # m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)
357
+
358
+ # for location_name in all_addresses:
359
+ # geocode_result = gmaps.geocode(location_name)
360
+ # if geocode_result:
361
+ # location = geocode_result[0]['geometry']['location']
362
+ # folium.Marker(
363
+ # [location['lat'], location['lng']],
364
+ # tooltip=f"{geocode_result[0]['formatted_address']}"
365
+ # ).add_to(m)
366
+
367
+ # map_html = m._repr_html_()
368
+ # return map_html
369
+
370
+
371
+ # def fetch_local_news():
372
+ # api_key = os.environ['SERP_API']
373
+ # url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
374
+ # response = requests.get(url)
375
+ # if response.status_code == 200:
376
+ # results = response.json().get("news_results", [])
377
+ # news_html = """
378
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
379
+ # <style>
380
+ # .news-item {
381
+ # font-family: 'Verdana', sans-serif;
382
+ # color: #333;
383
+ # background-color: #f0f8ff;
384
+ # margin-bottom: 15px;
385
+ # padding: 10px;
386
+ # border-radius: 5px;
387
+ # transition: box-shadow 0.3s ease, background-color 0.3s ease;
388
+ # font-weight: bold;
389
+ # }
390
+ # .news-item:hover {
391
+ # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
392
+ # background-color: #e6f7ff;
393
+ # }
394
+ # .news-item a {
395
+ # color: #1E90FF;
396
+ # text-decoration: none;
397
+ # font-weight: bold;
398
+ # }
399
+ # .news-item a:hover {
400
+ # text-decoration: underline;
401
+ # }
402
+ # .news-preview {
403
+ # position: absolute;
404
+ # display: none;
405
+ # border: 1px solid #ccc;
406
+ # border-radius: 5px;
407
+ # box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
408
+ # background-color: white;
409
+ # z-index: 1000;
410
+ # max-width: 300px;
411
+ # padding: 10px;
412
+ # font-family: 'Verdana', sans-serif;
413
+ # color: #333;
414
+ # }
415
+ # </style>
416
+ # <script>
417
+ # function showPreview(event, previewContent) {
418
+ # var previewBox = document.getElementById('news-preview');
419
+ # previewBox.innerHTML = previewContent;
420
+ # previewBox.style.left = event.pageX + 'px';
421
+ # previewBox.style.top = event.pageY + 'px';
422
+ # previewBox.style.display = 'block';
423
+ # }
424
+ # function hidePreview() {
425
+ # var previewBox = document.getElementById('news-preview');
426
+ # previewBox.style.display = 'none';
427
+ # }
428
+ # </script>
429
+ # <div id="news-preview" class="news-preview"></div>
430
+ # """
431
+ # for index, result in enumerate(results[:7]):
432
+ # title = result.get("title", "No title")
433
+ # link = result.get("link", "#")
434
+ # snippet = result.get("snippet", "")
435
+ # news_html += f"""
436
+ # <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
437
+ # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
438
+ # <p>{snippet}</p>
439
+ # </div>
440
+ # """
441
+ # return news_html
442
+ # else:
443
+ # return "<p>Failed to fetch local news</p>"
444
+
445
+ # import numpy as np
446
+ # import torch
447
+ # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
448
+
449
+ # model_id = 'openai/whisper-large-v3'
450
+ # device = "cuda:0" if torch.cuda.is_available() else "cpu"
451
+ # torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
452
+ # model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
453
+ # processor = AutoProcessor.from_pretrained(model_id)
454
+
455
+ # pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
456
+
457
+ # base_audio_drive = "/data/audio"
458
+
459
+ # # def transcribe_function(stream, new_chunk):
460
+ # # try:
461
+ # # sr, y = new_chunk[0], new_chunk[1]
462
+ # # except TypeError:
463
+ # # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
464
+ # # return stream, "", None
465
+
466
+ # # y = y.astype(np.float32) / np.max(np.abs(y))
467
+
468
+ # # if stream is not None:
469
+ # # stream = np.concatenate([stream, y])
470
+ # # else:
471
+ # # stream = y
472
+
473
+ # # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
474
+
475
+ # # full_text = result.get("text","")
476
+
477
+ # # return stream, full_text, result
478
+
479
+
480
+ # def transcribe_function(stream, new_chunk):
481
+ # sr, y = new_chunk[0], new_chunk[1]
482
+ # y = y.astype(np.float32) / np.max(np.abs(y))
483
+ # if stream is not None:
484
+ # stream = np.concatenate([stream, y])
485
+ # else:
486
+ # stream = y
487
+ # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
488
+ # full_text = result.get("text", "")
489
+ # return stream, full_text # Return the transcribed text
490
+
491
+ # def update_map_with_response(history):
492
+ # if not history:
493
+ # return ""
494
+ # response = history[-1][1]
495
+ # addresses = extract_addresses(response)
496
+ # return generate_map(addresses)
497
+
498
+ # def clear_textbox():
499
+ # return ""
500
+
501
+ # def show_map_if_details(history,choice):
502
+ # if choice in ["Details", "Conversational"]:
503
+ # return gr.update(visible=True), update_map_with_response(history)
504
+ # else:
505
+ # return gr.update(visible=False), ""
506
+
507
+ # def generate_audio_elevenlabs(text):
508
+ # XI_API_KEY = os.environ['ELEVENLABS_API']
509
+ # VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
510
+ # tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
511
+ # headers = {
512
+ # "Accept": "application/json",
513
+ # "xi-api-key": XI_API_KEY
514
+ # }
515
+ # data = {
516
+ # "text": str(text),
517
+ # "model_id": "eleven_multilingual_v2",
518
+ # "voice_settings": {
519
+ # "stability": 1.0,
520
+ # "similarity_boost": 0.0,
521
+ # "style": 0.60,
522
+ # "use_speaker_boost": False
523
+ # }
524
+ # }
525
+ # response = requests.post(tts_url, headers=headers, json=data, stream=True)
526
+ # if response.ok:
527
+ # with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
528
+ # for chunk in response.iter_content(chunk_size=1024):
529
+ # f.write(chunk)
530
+ # temp_audio_path = f.name
531
+ # logging.debug(f"Audio saved to {temp_audio_path}")
532
+ # return temp_audio_path
533
+ # else:
534
+ # logging.error(f"Error generating audio: {response.text}")
535
+ # return None
536
+
537
+ # repo_id = "parler-tts/parler-tts-mini-expresso"
538
+
539
+ # parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
540
+ # parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
541
+ # parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
542
+
543
+ # SAMPLE_RATE = parler_feature_extractor.sampling_rate
544
+ # SEED = 42
545
+
546
+ # def preprocess(text):
547
+ # number_normalizer = EnglishNumberNormalizer()
548
+ # text = number_normalizer(text).strip()
549
+ # if text[-1] not in punctuation:
550
+ # text = f"{text}."
551
+
552
+ # abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
553
+
554
+ # def separate_abb(chunk):
555
+ # chunk = chunk.replace(".", "")
556
+ # return " ".join(chunk)
557
+
558
+ # abbreviations = re.findall(abbreviations_pattern, text)
559
+ # for abv in abbreviations:
560
+ # if abv in text:
561
+ # text = text.replace(abv, separate_abb(abv))
562
+ # return text
563
+
564
+ # def chunk_text(text, max_length=250):
565
+ # words = text.split()
566
+ # chunks = []
567
+ # current_chunk = []
568
+ # current_length = 0
569
+
570
+ # for word in words:
571
+ # if current_length + len(word) + 1 <= max_length:
572
+ # current_chunk.append(word)
573
+ # current_length += len(word) + 1
574
+ # else:
575
+ # chunks.append(' '.join(current_chunk))
576
+ # current_chunk = [word]
577
+ # current_length = len(word) + 1
578
+
579
+ # if current_chunk:
580
+ # chunks.append(' '.join(current_chunk))
581
+
582
+ # return chunks
583
+
584
+ # def generate_audio_parler_tts(text):
585
+ # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
586
+ # chunks = chunk_text(preprocess(text))
587
+ # audio_segments = []
588
+
589
+ # for chunk in chunks:
590
+ # inputs = parler_tokenizer(description, return_tensors="pt").to(device)
591
+ # prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
592
+
593
+ # set_seed(SEED)
594
+ # generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
595
+ # audio_arr = generation.cpu().numpy().squeeze()
596
+
597
+ # temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
598
+ # write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
599
+ # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
600
+
601
+ # combined_audio = sum(audio_segments)
602
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio.wav")
603
+ # combined_audio.export(combined_audio_path, format="wav")
604
+
605
+ # logging.debug(f"Audio saved to {combined_audio_path}")
606
+ # return combined_audio_path
607
+
608
+ # # Load the MARS5 model
609
+ # mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
610
+
611
+ # def generate_audio_mars5(text):
612
+ # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
613
+ # kwargs_dict = {
614
+ # 'temperature': 0.2,
615
+ # 'top_k': -1,
616
+ # 'top_p': 0.2,
617
+ # 'typical_p': 1.0,
618
+ # 'freq_penalty': 2.6,
619
+ # 'presence_penalty': 0.4,
620
+ # 'rep_penalty_window': 100,
621
+ # 'max_prompt_phones': 360,
622
+ # 'deep_clone': True,
623
+ # 'nar_guidance_w': 3
624
+ # }
625
+
626
+ # chunks = chunk_text(preprocess(text))
627
+ # audio_segments = []
628
+
629
+ # for chunk in chunks:
630
+ # wav = torch.zeros(1, mars5.sr) # Use a placeholder silent audio for the reference
631
+ # cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
632
+ # ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
633
+
634
+
635
+ # temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
636
+ # torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
637
+ # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
638
+
639
+ # combined_audio = sum(audio_segments)
640
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
641
+ # combined_audio.export(combined_audio_path, format="wav")
642
+
643
+ # logging.debug(f"Audio saved to {combined_audio_path}")
644
+ # return combined_audio_path
645
+
646
+ # pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
647
+ # pipe.to(device)
648
+
649
+ # def generate_image(prompt):
650
+ # with torch.cuda.amp.autocast():
651
+ # image = pipe(
652
+ # prompt,
653
+ # num_inference_steps=28,
654
+ # guidance_scale=3.0,
655
+ # ).images[0]
656
+ # return image
657
+
658
+ # hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Toyota coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
659
+ # hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
660
+ # hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
661
+
662
+ # def update_images():
663
+ # image_1 = generate_image(hardcoded_prompt_1)
664
+ # image_2 = generate_image(hardcoded_prompt_2)
665
+ # image_3 = generate_image(hardcoded_prompt_3)
666
+ # return image_1, image_2, image_3
667
+
668
+ # with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
669
+ # with gr.Row():
670
+ # with gr.Column():
671
+ # state = gr.State()
672
+
673
+ # chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
674
+ # choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
675
+
676
+ # gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
677
+
678
+ # chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!",placeholder="After Prompt,click Retriever Only")
679
+ # chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input], api_name="voice_query")
680
+ # tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
681
+ # retriver_button = gr.Button("Retriever")
682
+
683
+ # gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
684
+ # location_output = gr.HTML()
685
+ # retriver_button.click(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input]).then(
686
+ # fn=bot, inputs=[chatbot, choice, tts_choice, state], outputs=[chatbot, gr.Audio(interactive=False, autoplay=True)], api_name="Ask_Retriever").then(
687
+ # fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder")
688
+
689
+ # bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot], api_name="generate_voice_response")
690
+ # bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
691
+ # chatbot.like(print_like_dislike, None, None)
692
+ # clear_button = gr.Button("Clear")
693
+ # clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
694
+
695
+ # audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
696
+ # audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
697
+
698
+
699
+
700
+
701
+
702
+
703
+
704
+ # # with gr.Column():
705
+ # # weather_output = gr.HTML(value=fetch_local_weather())
706
+ # # news_output = gr.HTML(value=fetch_local_news())
707
+ # # news_output = gr.HTML(value=fetch_local_events())
708
+
709
+
710
+ # with gr.Column():
711
+ # image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
712
+ # image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
713
+ # image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
714
+
715
+ # refresh_button = gr.Button("Refresh Images")
716
+ # refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
717
+ # location_output = gr.HTML()
718
+ # bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output], api_name="map_finder")
719
+
720
+
721
+
722
+ # demo.queue()
723
+ # demo.launch(share=True)
724
+
725
  import gradio as gr
726
  import requests
727
  import os
 
956
  # Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
957
  # {context}
958
  # Question: {question}
959
+ # Helpful Answer:""""
960
 
961
  template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 16th july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
962
  memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
 
1084
  if geocode_result:
1085
  location = geocode_result[0]['geometry']['location']
1086
  folium.Marker(
1087
+ [location['lat'], 'lng']],
1088
  tooltip=f"{geocode_result[0]['formatted_address']}"
1089
  ).add_to(m)
1090
 
 
1180
 
1181
  base_audio_drive = "/data/audio"
1182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1183
  def transcribe_function(stream, new_chunk):
1184
  sr, y = new_chunk[0], new_chunk[1]
1185
  y = y.astype(np.float32) / np.max(np.abs(y))
 
1398
  audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
1399
  audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
1400
 
1401
+ # New components for recording and sending chunks
1402
+ audio_recorder = gr.Audio(source="microphone", type="numpy", label="Record Audio Chunk")
1403
+ send_chunk_button = gr.Button("Send Chunk")
1404
 
1405
+ def transcribe_chunk(audio):
1406
+ sr, y = audio
1407
+ y = y.astype(np.float32) / np.max(np.abs(y))
1408
+ result = pipe_asr({"array": y, "sampling_rate": sr}, return_timestamps=False)
1409
+ return result["text"]
1410
 
1411
+ send_chunk_button.click(fn=transcribe_chunk, inputs=audio_recorder, outputs=chat_input).then(
1412
+ fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input])
1413
+
1414
+ with gr.Column():
1415
+ weather_output = gr.HTML(value=fetch_local_weather())
1416
+ news_output = gr.HTML(value=fetch_local_news())
1417
+ events_output = gr.HTML(value=fetch_local_events())
1418
 
1419
 
1420
  with gr.Column():
 
1442
 
1443
 
1444
 
1445
+