Pijush2023 commited on
Commit
4a2e33d
·
verified ·
1 Parent(s): becad3f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -739
app.py CHANGED
@@ -1,727 +1,3 @@
1
- # import gradio as gr
2
- # import requests
3
- # import os
4
- # import time
5
- # import re
6
- # import logging
7
- # import tempfile
8
- # import folium
9
- # import concurrent.futures
10
- # import torch
11
- # from PIL import Image
12
- # from datetime import datetime
13
- # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
14
- # from googlemaps import Client as GoogleMapsClient
15
- # from gtts import gTTS
16
- # from diffusers import StableDiffusionPipeline
17
- # from langchain_openai import OpenAIEmbeddings, ChatOpenAI
18
- # from langchain_pinecone import PineconeVectorStore
19
- # from langchain.prompts import PromptTemplate
20
- # from langchain.chains import RetrievalQA
21
- # from langchain.chains.conversation.memory import ConversationBufferWindowMemory
22
- # from langchain.agents import Tool, initialize_agent
23
- # from huggingface_hub import login
24
- # from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
25
- # from parler_tts import ParlerTTSForConditionalGeneration
26
- # from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
27
- # from scipy.io.wavfile import write as write_wav
28
- # from pydub import AudioSegment
29
- # from string import punctuation
30
- # import librosa
31
- # from pathlib import Path
32
- # import torchaudio
33
-
34
- # # Check if the token is already set in the environment variables
35
- # hf_token = os.getenv("HF_TOKEN")
36
- # if hf_token is None:
37
- # print("Please set your Hugging Face token in the environment variables.")
38
- # else:
39
- # login(token=hf_token)
40
-
41
- # logging.basicConfig(level=logging.DEBUG)
42
-
43
- # embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
44
-
45
- # from pinecone import Pinecone
46
- # pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
47
-
48
- # index_name = "birminghumsummary1"
49
- # vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
50
- # retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
51
-
52
- # chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
53
-
54
- # conversational_memory = ConversationBufferWindowMemory(
55
- # memory_key='chat_history',
56
- # k=10,
57
- # return_messages=True
58
- # )
59
-
60
- # def get_current_time_and_date():
61
- # now = datetime.now()
62
- # return now.strftime("%Y-%m-%d %H:%M:%S")
63
-
64
- # current_time_and_date = get_current_time_and_date()
65
-
66
-
67
-
68
- # def fetch_local_events():
69
-
70
-
71
- # api_key = os.environ['SERP_API']
72
- # url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
73
- # response = requests.get(url)
74
- # if response.status_code == 200:
75
- # events_results = response.json().get("events_results", [])
76
- # events_html = """
77
- # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
78
- # <style>
79
- # table {
80
- # font-family: 'Verdana', sans-serif;
81
- # color: #333;
82
- # border-collapse: collapse;
83
- # width: 100%;
84
- # }
85
- # th, td {
86
- # border: 1px solid #fff !important;
87
- # padding: 8px;
88
- # }
89
- # th {
90
- # background-color: #f2f2f2;
91
- # color: #333;
92
- # text-align: left;
93
- # }
94
- # tr:hover {
95
- # background-color: #f5f5f5;
96
- # }
97
- # .event-link {
98
- # color: #1E90FF;
99
- # text-decoration: none;
100
- # }
101
- # .event-link:hover {
102
- # text-decoration: underline;
103
- # }
104
- # </style>
105
- # <table>
106
- # <tr>
107
- # <th>Title</th>
108
- # <th>Date and Time</th>
109
- # <th>Location</th>
110
- # </tr>
111
- # """
112
- # for event in events_results:
113
- # title = event.get("title", "No title")
114
- # date_info = event.get("date", {})
115
- # date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
116
- # location = event.get("address", "No location")
117
- # if isinstance(location, list):
118
- # location = " ".join(location)
119
- # location = location.replace("[", "").replace("]", "")
120
- # link = event.get("link", "#")
121
- # events_html += f"""
122
- # <tr>
123
- # <td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
124
- # <td>{date}</td>
125
- # <td>{location}</td>
126
- # </tr>
127
- # """
128
- # events_html += "</table>"
129
- # return events_html
130
- # else:
131
- # return "<p>Failed to fetch local events</p>"
132
-
133
-
134
-
135
-
136
- # def fetch_local_weather():
137
- # try:
138
- # api_key = os.environ['WEATHER_API']
139
- # url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
140
- # response = requests.get(url)
141
- # response.raise_for_status()
142
- # jsonData = response.json()
143
-
144
- # current_conditions = jsonData.get("currentConditions", {})
145
- # temp_celsius = current_conditions.get("temp", "N/A")
146
-
147
- # if temp_celsius != "N/A":
148
- # temp_fahrenheit = int((temp_celsius * 9/5) + 32)
149
- # else:
150
- # temp_fahrenheit = "N/A"
151
-
152
- # condition = current_conditions.get("conditions", "N/A")
153
- # humidity = current_conditions.get("humidity", "N/A")
154
-
155
- # weather_html = f"""
156
- # <div class="weather-theme">
157
- # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
158
- # <div class="weather-content">
159
- # <div class="weather-icon">
160
- # <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
161
- # </div>
162
- # <div class="weather-details">
163
- # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
164
- # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
165
- # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
166
- # </div>
167
- # </div>
168
- # </div>
169
- # <style>
170
- # .weather-theme {{
171
- # animation: backgroundAnimation 10s infinite alternate;
172
- # border-radius: 10px;
173
- # padding: 10px;
174
- # margin-bottom: 15px;
175
- # background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
176
- # background-size: 400% 400%;
177
- # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
178
- # transition: box-shadow 0.3s ease, background-color 0.3s ease;
179
- # }}
180
- # .weather-theme:hover {{
181
- # box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
182
- # background-position: 100% 100%;
183
- # }}
184
- # @keyframes backgroundAnimation {{
185
- # 0% {{ background-position: 0% 50%; }}
186
- # 100% {{ background-position: 100% 50%; }}
187
- # }}
188
- # .weather-content {{
189
- # display: flex;
190
- # align-items: center;
191
- # }}
192
- # .weather-icon {{
193
- # flex: 1;
194
- # }}
195
- # .weather-details {{
196
- # flex: 3;
197
- # }}
198
- # </style>
199
- # """
200
- # return weather_html
201
- # except requests.exceptions.RequestException as e:
202
- # return f"<p>Failed to fetch local weather: {e}</p>"
203
-
204
- # def get_weather_icon(condition):
205
- # condition_map = {
206
- # "Clear": "c01d",
207
- # "Partly Cloudy": "c02d",
208
- # "Cloudy": "c03d",
209
- # "Overcast": "c04d",
210
- # "Mist": "a01d",
211
- # "Patchy rain possible": "r01d",
212
- # "Light rain": "r02d",
213
- # "Moderate rain": "r03d",
214
- # "Heavy rain": "r04d",
215
- # "Snow": "s01d",
216
- # "Thunderstorm": "t01d",
217
- # "Fog": "a05d",
218
- # }
219
- # return condition_map.get(condition, "c04d")
220
-
221
- # template1 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on weather being a sunny bright day and the today's date is 1st july 2024, use the following pieces of context,
222
- # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
223
- # Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
224
- # event type and description.And also add this Birmingham,AL at the end of each address, Always say "It was my pleasure!" at the end of the answer.
225
- # {context}
226
- # Question: {question}
227
- # Helpful Answer:"""
228
-
229
-
230
- # # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
231
- # # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
232
- # # Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
233
- # # {context}
234
- # # Question: {question}
235
- # # Helpful Answer:"""
236
-
237
- # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 16th july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
238
- # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
239
- # Keep the answer short ,sweet and crisp and in one shot. Always say "It was my pleasure!" at the end of the answer.
240
- # {context}
241
- # Question: {question}
242
- # Helpful Answer:"""
243
-
244
- # QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
245
- # QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
246
-
247
- # def build_qa_chain(prompt_template):
248
- # qa_chain = RetrievalQA.from_chain_type(
249
- # llm=chat_model,
250
- # chain_type="stuff",
251
- # retriever=retriever,
252
- # chain_type_kwargs={"prompt": prompt_template}
253
- # )
254
- # tools = [
255
- # Tool(
256
- # name='Knowledge Base',
257
- # func=qa_chain,
258
- # description='Use this tool when answering general knowledge queries to get more information about the topic'
259
- # )
260
- # ]
261
- # return qa_chain, tools
262
-
263
- # def initialize_agent_with_prompt(prompt_template):
264
- # qa_chain, tools = build_qa_chain(prompt_template)
265
- # agent = initialize_agent(
266
- # agent='chat-conversational-react-description',
267
- # tools=tools,
268
- # llm=chat_model,
269
- # verbose=False,
270
- # max_iteration=5,
271
- # early_stopping_method='generate',
272
- # memory=conversational_memory
273
- # )
274
- # return agent
275
-
276
-
277
- # def generate_answer(message, choice):
278
- # logging.debug(f"generate_answer called with prompt_choice: {choice}")
279
-
280
- # if choice == "Details":
281
- # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
282
- # elif choice == "Conversational":
283
- # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
284
- # else:
285
- # logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
286
- # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
287
- # response = agent(message)
288
-
289
- # addresses = extract_addresses(response['output'])
290
- # return response['output'], addresses
291
-
292
-
293
-
294
- # def bot(history, choice, tts_choice, state):
295
- # if not history:
296
- # return history
297
- # response, addresses = generate_answer(history[-1][0], choice)
298
- # history[-1][1] = ""
299
-
300
- # with concurrent.futures.ThreadPoolExecutor() as executor:
301
- # if tts_choice == "Alpha":
302
- # audio_future = executor.submit(generate_audio_elevenlabs, response)
303
- # elif tts_choice == "Beta":
304
- # audio_future = executor.submit(generate_audio_parler_tts, response)
305
- # elif tts_choice == "Gamma":
306
- # audio_future = executor.submit(generate_audio_mars5, response)
307
-
308
- # for character in response:
309
- # history[-1][1] += character
310
- # time.sleep(0.05)
311
- # yield history, None
312
-
313
- # audio_path = audio_future.result()
314
- # yield history, audio_path
315
-
316
- # def add_message(history, message):
317
- # history.append((message, None))
318
- # return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
319
-
320
-
321
-
322
- # def print_like_dislike(x: gr.LikeData):
323
- # print(x.index, x.value, x.liked)
324
-
325
- # def extract_addresses(response):
326
- # if not isinstance(response, str):
327
- # response = str(response)
328
- # address_patterns = [
329
- # r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
330
- # r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
331
- # r'([A-Z].*,\sAL\s\d{5})',
332
- # r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
333
- # r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
334
- # r'(\d{2}.*\sStreets)',
335
- # r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
336
- # r'([a-zA-Z]\s Birmingham)',
337
- # r'([a-zA-Z].*,\sBirmingham,\sAL)',
338
- # r'(^Birmingham,AL$)'
339
- # ]
340
- # addresses = []
341
- # for pattern in address_patterns:
342
- # addresses.extend(re.findall(pattern, response))
343
- # return addresses
344
-
345
- # all_addresses = []
346
-
347
-
348
-
349
- # def generate_map(location_names):
350
- # global all_addresses
351
- # all_addresses.extend(location_names)
352
-
353
- # api_key = os.environ['GOOGLEMAPS_API_KEY']
354
- # gmaps = GoogleMapsClient(key=api_key)
355
-
356
- # m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)
357
-
358
- # for location_name in all_addresses:
359
- # geocode_result = gmaps.geocode(location_name)
360
- # if geocode_result:
361
- # location = geocode_result[0]['geometry']['location']
362
- # folium.Marker(
363
- # [location['lat'], location['lng']],
364
- # tooltip=f"{geocode_result[0]['formatted_address']}"
365
- # ).add_to(m)
366
-
367
- # map_html = m._repr_html_()
368
- # return map_html
369
-
370
-
371
- # def fetch_local_news():
372
- # api_key = os.environ['SERP_API']
373
- # url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
374
- # response = requests.get(url)
375
- # if response.status_code == 200:
376
- # results = response.json().get("news_results", [])
377
- # news_html = """
378
- # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
379
- # <style>
380
- # .news-item {
381
- # font-family: 'Verdana', sans-serif;
382
- # color: #333;
383
- # background-color: #f0f8ff;
384
- # margin-bottom: 15px;
385
- # padding: 10px;
386
- # border-radius: 5px;
387
- # transition: box-shadow 0.3s ease, background-color 0.3s ease;
388
- # font-weight: bold;
389
- # }
390
- # .news-item:hover {
391
- # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
392
- # background-color: #e6f7ff;
393
- # }
394
- # .news-item a {
395
- # color: #1E90FF;
396
- # text-decoration: none;
397
- # font-weight: bold;
398
- # }
399
- # .news-item a:hover {
400
- # text-decoration: underline;
401
- # }
402
- # .news-preview {
403
- # position: absolute;
404
- # display: none;
405
- # border: 1px solid #ccc;
406
- # border-radius: 5px;
407
- # box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
408
- # background-color: white;
409
- # z-index: 1000;
410
- # max-width: 300px;
411
- # padding: 10px;
412
- # font-family: 'Verdana', sans-serif;
413
- # color: #333;
414
- # }
415
- # </style>
416
- # <script>
417
- # function showPreview(event, previewContent) {
418
- # var previewBox = document.getElementById('news-preview');
419
- # previewBox.innerHTML = previewContent;
420
- # previewBox.style.left = event.pageX + 'px';
421
- # previewBox.style.top = event.pageY + 'px';
422
- # previewBox.style.display = 'block';
423
- # }
424
- # function hidePreview() {
425
- # var previewBox = document.getElementById('news-preview');
426
- # previewBox.style.display = 'none';
427
- # }
428
- # </script>
429
- # <div id="news-preview" class="news-preview"></div>
430
- # """
431
- # for index, result in enumerate(results[:7]):
432
- # title = result.get("title", "No title")
433
- # link = result.get("link", "#")
434
- # snippet = result.get("snippet", "")
435
- # news_html += f"""
436
- # <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
437
- # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
438
- # <p>{snippet}</p>
439
- # </div>
440
- # """
441
- # return news_html
442
- # else:
443
- # return "<p>Failed to fetch local news</p>"
444
-
445
- # import numpy as np
446
- # import torch
447
- # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
448
-
449
- # model_id = 'openai/whisper-large-v3'
450
- # device = "cuda:0" if torch.cuda.is_available() else "cpu"
451
- # torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
452
- # model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
453
- # processor = AutoProcessor.from_pretrained(model_id)
454
-
455
- # pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
456
-
457
- # base_audio_drive = "/data/audio"
458
-
459
- # # def transcribe_function(stream, new_chunk):
460
- # # try:
461
- # # sr, y = new_chunk[0], new_chunk[1]
462
- # # except TypeError:
463
- # # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
464
- # # return stream, "", None
465
-
466
- # # y = y.astype(np.float32) / np.max(np.abs(y))
467
-
468
- # # if stream is not None:
469
- # # stream = np.concatenate([stream, y])
470
- # # else:
471
- # # stream = y
472
-
473
- # # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
474
-
475
- # # full_text = result.get("text","")
476
-
477
- # # return stream, full_text, result
478
-
479
-
480
- # def transcribe_function(stream, new_chunk):
481
- # sr, y = new_chunk[0], new_chunk[1]
482
- # y = y.astype(np.float32) / np.max(np.abs(y))
483
- # if stream is not None:
484
- # stream = np.concatenate([stream, y])
485
- # else:
486
- # stream = y
487
- # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
488
- # full_text = result.get("text", "")
489
- # return stream, full_text # Return the transcribed text
490
-
491
- # def update_map_with_response(history):
492
- # if not history:
493
- # return ""
494
- # response = history[-1][1]
495
- # addresses = extract_addresses(response)
496
- # return generate_map(addresses)
497
-
498
- # def clear_textbox():
499
- # return ""
500
-
501
- # def show_map_if_details(history,choice):
502
- # if choice in ["Details", "Conversational"]:
503
- # return gr.update(visible=True), update_map_with_response(history)
504
- # else:
505
- # return gr.update(visible=False), ""
506
-
507
- # def generate_audio_elevenlabs(text):
508
- # XI_API_KEY = os.environ['ELEVENLABS_API']
509
- # VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
510
- # tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
511
- # headers = {
512
- # "Accept": "application/json",
513
- # "xi-api-key": XI_API_KEY
514
- # }
515
- # data = {
516
- # "text": str(text),
517
- # "model_id": "eleven_multilingual_v2",
518
- # "voice_settings": {
519
- # "stability": 1.0,
520
- # "similarity_boost": 0.0,
521
- # "style": 0.60,
522
- # "use_speaker_boost": False
523
- # }
524
- # }
525
- # response = requests.post(tts_url, headers=headers, json=data, stream=True)
526
- # if response.ok:
527
- # with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
528
- # for chunk in response.iter_content(chunk_size=1024):
529
- # f.write(chunk)
530
- # temp_audio_path = f.name
531
- # logging.debug(f"Audio saved to {temp_audio_path}")
532
- # return temp_audio_path
533
- # else:
534
- # logging.error(f"Error generating audio: {response.text}")
535
- # return None
536
-
537
- # repo_id = "parler-tts/parler-tts-mini-expresso"
538
-
539
- # parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
540
- # parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
541
- # parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
542
-
543
- # SAMPLE_RATE = parler_feature_extractor.sampling_rate
544
- # SEED = 42
545
-
546
- # def preprocess(text):
547
- # number_normalizer = EnglishNumberNormalizer()
548
- # text = number_normalizer(text).strip()
549
- # if text[-1] not in punctuation:
550
- # text = f"{text}."
551
-
552
- # abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
553
-
554
- # def separate_abb(chunk):
555
- # chunk = chunk.replace(".", "")
556
- # return " ".join(chunk)
557
-
558
- # abbreviations = re.findall(abbreviations_pattern, text)
559
- # for abv in abbreviations:
560
- # if abv in text:
561
- # text = text.replace(abv, separate_abb(abv))
562
- # return text
563
-
564
- # def chunk_text(text, max_length=250):
565
- # words = text.split()
566
- # chunks = []
567
- # current_chunk = []
568
- # current_length = 0
569
-
570
- # for word in words:
571
- # if current_length + len(word) + 1 <= max_length:
572
- # current_chunk.append(word)
573
- # current_length += len(word) + 1
574
- # else:
575
- # chunks.append(' '.join(current_chunk))
576
- # current_chunk = [word]
577
- # current_length = len(word) + 1
578
-
579
- # if current_chunk:
580
- # chunks.append(' '.join(current_chunk))
581
-
582
- # return chunks
583
-
584
- # def generate_audio_parler_tts(text):
585
- # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
586
- # chunks = chunk_text(preprocess(text))
587
- # audio_segments = []
588
-
589
- # for chunk in chunks:
590
- # inputs = parler_tokenizer(description, return_tensors="pt").to(device)
591
- # prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
592
-
593
- # set_seed(SEED)
594
- # generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
595
- # audio_arr = generation.cpu().numpy().squeeze()
596
-
597
- # temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
598
- # write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
599
- # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
600
-
601
- # combined_audio = sum(audio_segments)
602
- # combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio.wav")
603
- # combined_audio.export(combined_audio_path, format="wav")
604
-
605
- # logging.debug(f"Audio saved to {combined_audio_path}")
606
- # return combined_audio_path
607
-
608
- # # Load the MARS5 model
609
- # mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
610
-
611
- # def generate_audio_mars5(text):
612
- # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
613
- # kwargs_dict = {
614
- # 'temperature': 0.2,
615
- # 'top_k': -1,
616
- # 'top_p': 0.2,
617
- # 'typical_p': 1.0,
618
- # 'freq_penalty': 2.6,
619
- # 'presence_penalty': 0.4,
620
- # 'rep_penalty_window': 100,
621
- # 'max_prompt_phones': 360,
622
- # 'deep_clone': True,
623
- # 'nar_guidance_w': 3
624
- # }
625
-
626
- # chunks = chunk_text(preprocess(text))
627
- # audio_segments = []
628
-
629
- # for chunk in chunks:
630
- # wav = torch.zeros(1, mars5.sr) # Use a placeholder silent audio for the reference
631
- # cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
632
- # ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
633
-
634
-
635
- # temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
636
- # torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
637
- # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
638
-
639
- # combined_audio = sum(audio_segments)
640
- # combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
641
- # combined_audio.export(combined_audio_path, format="wav")
642
-
643
- # logging.debug(f"Audio saved to {combined_audio_path}")
644
- # return combined_audio_path
645
-
646
- # pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
647
- # pipe.to(device)
648
-
649
- # def generate_image(prompt):
650
- # with torch.cuda.amp.autocast():
651
- # image = pipe(
652
- # prompt,
653
- # num_inference_steps=28,
654
- # guidance_scale=3.0,
655
- # ).images[0]
656
- # return image
657
-
658
- # hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Toyota coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
659
- # hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
660
- # hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
661
-
662
- # def update_images():
663
- # image_1 = generate_image(hardcoded_prompt_1)
664
- # image_2 = generate_image(hardcoded_prompt_2)
665
- # image_3 = generate_image(hardcoded_prompt_3)
666
- # return image_1, image_2, image_3
667
-
668
- # with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
669
- # with gr.Row():
670
- # with gr.Column():
671
- # state = gr.State()
672
-
673
- # chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
674
- # choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
675
-
676
- # gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
677
-
678
- # chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!",placeholder="After Prompt,click Retriever Only")
679
- # chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input], api_name="voice_query")
680
- # tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
681
- # retriver_button = gr.Button("Retriever")
682
-
683
- # gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
684
- # location_output = gr.HTML()
685
- # retriver_button.click(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input]).then(
686
- # fn=bot, inputs=[chatbot, choice, tts_choice, state], outputs=[chatbot, gr.Audio(interactive=False, autoplay=True)], api_name="Ask_Retriever").then(
687
- # fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder")
688
-
689
- # bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot], api_name="generate_voice_response")
690
- # bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
691
- # chatbot.like(print_like_dislike, None, None)
692
- # clear_button = gr.Button("Clear")
693
- # clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
694
-
695
- # audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
696
- # audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
697
-
698
-
699
-
700
-
701
-
702
-
703
-
704
- # # with gr.Column():
705
- # # weather_output = gr.HTML(value=fetch_local_weather())
706
- # # news_output = gr.HTML(value=fetch_local_news())
707
- # # news_output = gr.HTML(value=fetch_local_events())
708
-
709
-
710
- # with gr.Column():
711
- # image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
712
- # image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
713
- # image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
714
-
715
- # refresh_button = gr.Button("Refresh Images")
716
- # refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
717
- # location_output = gr.HTML()
718
- # bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output], api_name="map_finder")
719
-
720
-
721
-
722
- # demo.queue()
723
- # demo.launch(share=True)
724
-
725
  import gradio as gr
726
  import requests
727
  import os
@@ -787,7 +63,11 @@ def get_current_time_and_date():
787
 
788
  current_time_and_date = get_current_time_and_date()
789
 
 
 
790
  def fetch_local_events():
 
 
791
  api_key = os.environ['SERP_API']
792
  url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
793
  response = requests.get(url)
@@ -850,6 +130,9 @@ def fetch_local_events():
850
  else:
851
  return "<p>Failed to fetch local events</p>"
852
 
 
 
 
853
  def fetch_local_weather():
854
  try:
855
  api_key = os.environ['WEATHER_API']
@@ -943,6 +226,14 @@ event type and description.And also add this Birmingham,AL at the end of each ad
943
  Question: {question}
944
  Helpful Answer:"""
945
 
 
 
 
 
 
 
 
 
946
  template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 16th july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
947
  memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
948
  Keep the answer short ,sweet and crisp and in one shot. Always say "It was my pleasure!" at the end of the answer.
@@ -982,6 +273,7 @@ def initialize_agent_with_prompt(prompt_template):
982
  )
983
  return agent
984
 
 
985
  def generate_answer(message, choice):
986
  logging.debug(f"generate_answer called with prompt_choice: {choice}")
987
 
@@ -997,6 +289,8 @@ def generate_answer(message, choice):
997
  addresses = extract_addresses(response['output'])
998
  return response['output'], addresses
999
 
 
 
1000
  def bot(history, choice, tts_choice, state):
1001
  if not history:
1002
  return history
@@ -1023,6 +317,8 @@ def add_message(history, message):
1023
  history.append((message, None))
1024
  return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
1025
 
 
 
1026
  def print_like_dislike(x: gr.LikeData):
1027
  print(x.index, x.value, x.liked)
1028
 
@@ -1048,6 +344,8 @@ def extract_addresses(response):
1048
 
1049
  all_addresses = []
1050
 
 
 
1051
  def generate_map(location_names):
1052
  global all_addresses
1053
  all_addresses.extend(location_names)
@@ -1069,6 +367,7 @@ def generate_map(location_names):
1069
  map_html = m._repr_html_()
1070
  return map_html
1071
 
 
1072
  def fetch_local_news():
1073
  api_key = os.environ['SERP_API']
1074
  url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
@@ -1157,6 +456,27 @@ pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=proce
1157
 
1158
  base_audio_drive = "/data/audio"
1159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160
  def transcribe_function(stream, new_chunk):
1161
  sr, y = new_chunk[0], new_chunk[1]
1162
  y = y.astype(np.float32) / np.max(np.abs(y))
@@ -1168,12 +488,6 @@ def transcribe_function(stream, new_chunk):
1168
  full_text = result.get("text", "")
1169
  return stream, full_text # Return the transcribed text
1170
 
1171
- def send_chunk_to_retriever(history, transcribed_text):
1172
- history.append((transcribed_text, None))
1173
- response, addresses = generate_answer(transcribed_text, "Conversational")
1174
- history[-1][1] = response
1175
- return history, response
1176
-
1177
  def update_map_with_response(history):
1178
  if not history:
1179
  return ""
@@ -1184,7 +498,7 @@ def update_map_with_response(history):
1184
  def clear_textbox():
1185
  return ""
1186
 
1187
- def show_map_if_details(history, choice):
1188
  if choice in ["Details", "Conversational"]:
1189
  return gr.update(visible=True), update_map_with_response(history)
1190
  else:
@@ -1317,6 +631,7 @@ def generate_audio_mars5(text):
1317
  cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
1318
  ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
1319
 
 
1320
  temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
1321
  torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
1322
  audio_segments.append(AudioSegment.from_wav(temp_audio_path))
@@ -1350,20 +665,17 @@ def update_images():
1350
  image_3 = generate_image(hardcoded_prompt_3)
1351
  return image_1, image_2, image_3
1352
 
1353
- # Define the stream state and the transcribed text state
1354
- audio_stream = gr.State()
1355
- transcribed_text = gr.State()
1356
-
1357
  with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1358
  with gr.Row():
1359
  with gr.Column():
1360
  state = gr.State()
 
1361
  chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
1362
  choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
1363
 
1364
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
1365
 
1366
- chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="After Prompt,click Retriever Only")
1367
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input], api_name="voice_query")
1368
  tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
1369
  retriver_button = gr.Button("Retriever")
@@ -1381,11 +693,20 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1381
  clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
1382
 
1383
  audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
1384
- audio_input.stream(transcribe_function, inputs=[audio_stream, audio_input], outputs=[audio_stream, transcribed_text], api_name="voice_query_to_text")
 
1385
 
1386
- send_chunk_button = gr.Button("Send Chunk")
1387
- send_chunk_button.click(fn=send_chunk_to_retriever, inputs=[chatbot, transcribed_text], outputs=[chatbot, gr.HTML()])
1388
 
 
 
 
 
 
 
 
 
 
 
1389
  with gr.Column():
1390
  image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
1391
  image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
@@ -1395,6 +716,8 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1395
  refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
1396
  location_output = gr.HTML()
1397
  bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output], api_name="map_finder")
 
 
1398
 
1399
  demo.queue()
1400
  demo.launch(share=True)
@@ -1407,3 +730,5 @@ demo.launch(share=True)
1407
 
1408
 
1409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import requests
3
  import os
 
63
 
64
  current_time_and_date = get_current_time_and_date()
65
 
66
+
67
+
68
  def fetch_local_events():
69
+
70
+
71
  api_key = os.environ['SERP_API']
72
  url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
73
  response = requests.get(url)
 
130
  else:
131
  return "<p>Failed to fetch local events</p>"
132
 
133
+
134
+
135
+
136
  def fetch_local_weather():
137
  try:
138
  api_key = os.environ['WEATHER_API']
 
226
  Question: {question}
227
  Helpful Answer:"""
228
 
229
+
230
+ # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
231
+ # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
232
+ # Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
233
+ # {context}
234
+ # Question: {question}
235
+ # Helpful Answer:"""
236
+
237
  template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 16th july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
238
  memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
239
  Keep the answer short ,sweet and crisp and in one shot. Always say "It was my pleasure!" at the end of the answer.
 
273
  )
274
  return agent
275
 
276
+
277
  def generate_answer(message, choice):
278
  logging.debug(f"generate_answer called with prompt_choice: {choice}")
279
 
 
289
  addresses = extract_addresses(response['output'])
290
  return response['output'], addresses
291
 
292
+
293
+
294
  def bot(history, choice, tts_choice, state):
295
  if not history:
296
  return history
 
317
  history.append((message, None))
318
  return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
319
 
320
+
321
+
322
  def print_like_dislike(x: gr.LikeData):
323
  print(x.index, x.value, x.liked)
324
 
 
344
 
345
  all_addresses = []
346
 
347
+
348
+
349
  def generate_map(location_names):
350
  global all_addresses
351
  all_addresses.extend(location_names)
 
367
  map_html = m._repr_html_()
368
  return map_html
369
 
370
+
371
  def fetch_local_news():
372
  api_key = os.environ['SERP_API']
373
  url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
 
456
 
457
  base_audio_drive = "/data/audio"
458
 
459
+ # def transcribe_function(stream, new_chunk):
460
+ # try:
461
+ # sr, y = new_chunk[0], new_chunk[1]
462
+ # except TypeError:
463
+ # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
464
+ # return stream, "", None
465
+
466
+ # y = y.astype(np.float32) / np.max(np.abs(y))
467
+
468
+ # if stream is not None:
469
+ # stream = np.concatenate([stream, y])
470
+ # else:
471
+ # stream = y
472
+
473
+ # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
474
+
475
+ # full_text = result.get("text","")
476
+
477
+ # return stream, full_text, result
478
+
479
+
480
  def transcribe_function(stream, new_chunk):
481
  sr, y = new_chunk[0], new_chunk[1]
482
  y = y.astype(np.float32) / np.max(np.abs(y))
 
488
  full_text = result.get("text", "")
489
  return stream, full_text # Return the transcribed text
490
 
 
 
 
 
 
 
491
  def update_map_with_response(history):
492
  if not history:
493
  return ""
 
498
  def clear_textbox():
499
  return ""
500
 
501
+ def show_map_if_details(history,choice):
502
  if choice in ["Details", "Conversational"]:
503
  return gr.update(visible=True), update_map_with_response(history)
504
  else:
 
631
  cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
632
  ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
633
 
634
+
635
  temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
636
  torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
637
  audio_segments.append(AudioSegment.from_wav(temp_audio_path))
 
665
  image_3 = generate_image(hardcoded_prompt_3)
666
  return image_1, image_2, image_3
667
 
 
 
 
 
668
  with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
669
  with gr.Row():
670
  with gr.Column():
671
  state = gr.State()
672
+
673
  chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
674
  choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
675
 
676
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
677
 
678
+ chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!",placeholder="After Prompt,click Retriever Only")
679
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input], api_name="voice_query")
680
  tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
681
  retriver_button = gr.Button("Retriever")
 
693
  clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
694
 
695
  audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
696
+ audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
697
+
698
 
 
 
699
 
700
+
701
+
702
+
703
+
704
+ # with gr.Column():
705
+ # weather_output = gr.HTML(value=fetch_local_weather())
706
+ # news_output = gr.HTML(value=fetch_local_news())
707
+ # news_output = gr.HTML(value=fetch_local_events())
708
+
709
+
710
  with gr.Column():
711
  image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
712
  image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
 
716
  refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
717
  location_output = gr.HTML()
718
  bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output], api_name="map_finder")
719
+
720
+
721
 
722
  demo.queue()
723
  demo.launch(share=True)
 
730
 
731
 
732
 
733
+
734
+