File size: 12,850 Bytes
9965e97
2ea6305
9965e97
 
 
2ea6305
9965e97
 
2ea6305
9965e97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ea6305
 
9965e97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import logging

# Set up logging
logging.basicConfig(level=logging.DEBUG)
from langchain_openai import OpenAIEmbeddings
import os
import re
import folium
import gradio as gr
import time
import requests
from googlemaps import Client as GoogleMapsClient
from gtts import gTTS
import tempfile
import string

embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])

from pinecone import Pinecone, ServerlessSpec
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])

index_name = "omaha-details"

from langchain_pinecone import PineconeVectorStore

vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})

from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.agents import Tool, initialize_agent

# Build prompt
template1 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Use the following pieces of context, 
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end.
If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer. 
Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
event type and description. Always say "It was my pleasure!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""

template2 = """You are an expert guide of Omaha, Nebraska's perennial events. 
With the context, memory, and message history provided, answer the question in as crisp as possible. Always include the time, date, and
event type and description only apart from that don't give any other details. Always say "It was my pleasure!" at the end of the answer.
If you don't know the answer, simply say, "Homie, I need to get more data for this," without making up an answer.

{context}
Question: {question}
Helpful Answer:"""

QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)

chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'],
                        temperature=0, model='gpt-4o')

conversational_memory = ConversationBufferWindowMemory(
    memory_key='chat_history',
    k=10,
    return_messages=True
)

# Define the retrieval QA chain
def build_qa_chain(prompt_template):
    qa_chain = RetrievalQA.from_chain_type(
        llm=chat_model,
        chain_type="stuff",
        retriever=retriever,
        chain_type_kwargs={"prompt": prompt_template}
    )
    tools = [
        Tool(
            name='Knowledge Base',
            func=qa_chain,
            description='use this tool when answering general knowledge queries to get more information about the topic'
        )
    ]
    return qa_chain, tools

# Define the agent initializer
def initialize_agent_with_prompt(prompt_template):
    qa_chain, tools = build_qa_chain(prompt_template)
    agent = initialize_agent(
        agent='chat-conversational-react-description',
        tools=tools,
        llm=chat_model,
        verbose=False,
        max_iteration=5,
        early_stopping_method='generate',
        memory=conversational_memory
    )
    return agent

# Define the function to generate answers
def generate_answer(message, choice):
    logging.debug(f"generate_answer called with prompt_choice: {choice}")
    if choice == "Details":
        agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
    elif choice == "Conversational":
        agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
    else:
        logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Details'")
        agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
    
    response = agent(message)
    return response['output']

def bot(history, choice):
    if not history:
        return history
    response = generate_answer(history[-1][0], choice)
    history[-1][1] = ""
    for character in response:
        history[-1][1] += character
        time.sleep(0.05)
        yield history

def add_message(history, message):
    history.append((message, None))
    return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

# Function to extract addresses from the chatbot's response
def extract_addresses(response):
    address_pattern_1 = r'([A-Z].*,\sOmaha,\sNE\s\d{5})'
    address_pattern_2 = r'(\d{4}\s.*,\sOmaha,\sNE\s\d{5})'
    address_pattern_3 = r'([A-Z].*,\sNE\s\d{5})'
    address_pattern_4 = r'([A-Z].*,.*\sSt,\sOmaha,\sNE\s\d{5})'
    address_pattern_5 = r'([A-Z].*,.*\sStreets,\sOmaha,\sNE\s\d{5})'
    address_pattern_6 = r'(\d{2}.*\sStreets)'
    address_pattern_7 = r'([A-Z].*\s\d{2},\sOmaha,\sNE\s\d{5})'
    addresses = re.findall(address_pattern_1, response) + re.findall(address_pattern_2, response) + \
                re.findall(address_pattern_3, response) + re.findall(address_pattern_4, response) + \
                re.findall(address_pattern_5, response) + re.findall(address_pattern_6, response) + \
                re.findall(address_pattern_7, response)
    return addresses

# Store all found addresses
all_addresses = []

# Map generation function using Google Maps Geocoding API
def generate_map(location_names):
    global all_addresses
    all_addresses.extend(location_names)
    
    api_key = os.environ['GOOGLEMAPS_API_KEY']
    gmaps = GoogleMapsClient(key=api_key)
    
    m = folium.Map(location=[41.2565, -95.9345], zoom_start=12)
    
    for location_name in all_addresses:
        geocode_result = gmaps.geocode(location_name)
        if geocode_result:
            location = geocode_result[0]['geometry']['location']
            folium.Marker(
                [location['lat'], location['lng']],
                tooltip=f"{geocode_result[0]['formatted_address']}"
            ).add_to(m)
    
    map_html = m._repr_html_()
    return map_html

# Function to fetch local news
def fetch_local_news():
    api_key = os.environ['SERP_API']
    url = f'https://serpapi.com/search.json?engine=google_news&q=ohama headline&api_key={api_key}'
    
    response = requests.get(url)
    if response.status_code == 200:
        results = response.json().get("news_results", [])
        news_html = "<h2>Omaha Today Headline </h2>"
        for index, result in enumerate(results[:10]):
            title = result.get("title", "No title")
            link = result.get("link", "#")
            snippet = result.get("snippet", "")
            news_html += f"<p>{index + 1}. <a href='{link}' target='_blank'>{title}</a><br>{snippet}</p>"
        return news_html
    else:
        return "<p>Failed to fetch local news</p>"

# Function to fetch local events
def fetch_local_events():
    api_key = os.environ['SERP_API']
    url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}'
    
    response = requests.get(url)
    if response.status_code == 200:
        events_results = response.json().get("events_results", [])
        events_text = "<h2>Local Events </h2>"
        for index, event in enumerate(events_results):
            title = event.get("title", "No title")
            date = event.get("date", "No date")
            location = event.get("address", "No location")
            link = event.get("link", "#")
            events_text += f"<p>{index + 1}. {title}<br>  Date: {date}<br>   Location: {location}<br> <a href='{link}' target='_blank'>Link :</a> <br>"
        return events_text
    else:
        return "Failed to fetch local events"

# Function to fetch local weather
def fetch_local_weather():
    try:
        api_key = os.environ['WEATHER_API']
        url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/omaha?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
        response = requests.get(url)
        response.raise_for_status()
        jsonData = response.json()
        
        current_conditions = jsonData.get("currentConditions", {})
        temp = current_conditions.get("temp", "N/A")
        condition = current_conditions.get("conditions", "N/A")
        humidity = current_conditions.get("humidity", "N/A")
        
        weather_html = f"<h2>Local Weather</h2>"
        weather_html += f"<p>Temperature: {temp}°C</p>"
        weather_html += f"<p>Condition: {condition}</p>"
        weather_html += f"<p>Humidity: {humidity}%</p>"
        
        return weather_html
    except requests.exceptions.RequestException as e:
        return f"<p>Failed to fetch local weather: {e}</p>"

# Voice Control
import numpy as np
import torch
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor

model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype,
                                                  #low_cpu_mem_usage=True,
                                                  use_safetensors=True).to(device)
processor = AutoProcessor.from_pretrained(model_id)

# Optimized ASR pipeline
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)

base_audio_drive = "/data/audio"

import numpy as np

def transcribe_function(stream, new_chunk):
    try:
        sr, y = new_chunk[0], new_chunk[1]
    except TypeError:
        print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
        return stream, "", None

    y = y.astype(np.float32) / np.max(np.abs(y))

    if stream is not None:
        stream = np.concatenate([stream, y])
    else:
        stream = y

    result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)

    full_text = result.get("text", "")
    
    return stream, full_text, result

# Map Retrieval Function for location finder
def update_map_with_response(history):
    if not history:
        return ""
    response = history[-1][1]
    addresses = extract_addresses(response)
    return generate_map(addresses)

def clear_textbox():
    return "" 

# Gradio Blocks interface
with gr.Blocks(theme='rawrsor1/Everforest') as demo:
    with gr.Row():
        with gr.Column():
            chatbot = gr.Chatbot([], elem_id="chatbot", bubble_full_width=False)
        
        with gr.Column():
            weather_output = gr.HTML(value=fetch_local_weather())
        
        with gr.Column():
            news_output = gr.HTML(value=fetch_local_news())

    def setup_ui():
        state = gr.State()
        with gr.Row():
            with gr.Column():
                gr.Markdown("Choose the prompt")
                choice = gr.Radio(label="Choose a prompt", choices=["Details", "Conversational"], value="Details")

            with gr.Column():  # Larger scale for the right column
                gr.Markdown("Enter the query / Voice Output")
                chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="Transcription")
                chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
                bot_msg = chat_msg.then(bot, [chatbot, choice], chatbot, api_name="bot_response")
                bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False), None, [chat_input])
                chatbot.like(print_like_dislike, None, None)
                clear_button = gr.Button("Clear")
                clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
        
            with gr.Column():  # Smaller scale for the left column
                gr.Markdown("Stream your Voice")
                audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
                audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")

        with gr.Row():
            with gr.Column():
                gr.Markdown("Locate the Events")
                location_output = gr.HTML()
                bot_msg.then(update_map_with_response, chatbot, location_output)

    setup_ui()

demo.queue()
demo.launch(share=True)