Spaces:
Paused
Paused
File size: 34,432 Bytes
2ea6305 9965e97 011279d 9965e97 6efc962 2ab1d57 011279d f8438f3 9e836dd 011279d e6b1a9d c7377a5 80afd72 d67e469 5714b0e 011279d 9965e97 011279d 9965e97 011279d 9965e97 011279d 9965e97 3eee156 a5fe401 a0b9812 3eee156 a5fe401 3eee156 ee7a3d2 a5fe401 3eee156 33b0c88 3eee156 ac15860 3eee156 ac15860 3eee156 ac15860 3eee156 a5fe401 3eee156 daa166f 3eee156 dbbad2d 3eee156 dbbad2d 3eee156 011279d f21d996 72a50e9 5dad142 72a50e9 9e3dabd f21d996 72a50e9 5dad142 72a50e9 9e3dabd 703dbcb 9965e97 72a50e9 907cfdb 9965e97 011279d 9965e97 7136172 9965e97 64844ba 22676f3 fa3a33c b42a16f 37e1112 a66cc63 e6b27f2 9965e97 6ee7d54 ff3590c 5d6ca7b 6ee7d54 5d6ca7b 6ee7d54 5d6ca7b 6ee7d54 e039dfb 9fc71c4 9965e97 cbe6f2e 011279d 9965e97 a5fe401 fd9c54a 9965e97 daa166f 08ea6d3 9965e97 c2c9ec8 a5fe401 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 91fa1a7 9965e97 c2c9ec8 9965e97 011279d d2ccdb1 8ea3b6d 5b88da1 9965e97 5b88da1 9965e97 a0658e4 5b88da1 9965e97 5b88da1 ecd1550 5b88da1 5c732dd a0658e4 5b88da1 a0658e4 cc16fb5 0a4bba2 cc16fb5 c5889cd cc16fb5 f1f58de 5fc0c82 e3631c2 6ce2755 cc16fb5 69fedc7 cc16fb5 69fedc7 cc16fb5 011279d d15ef34 011279d 470f58c bc5bf64 3ce59b7 9e836dd 1c96581 a5efe33 59c0c91 a5efe33 0c06c69 9111566 730eafc 1d8404d 9111566 e24c2d3 9111566 a5fe401 9111566 f19f714 a5fe401 a6a5eec 2ff3c92 b63d593 2ff3c92 9111566 0c06c69 9111566 b63d593 9111566 2ff3c92 9111566 b63d593 9111566 f19f714 9111566 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
import os
import re
import time
import requests
import logging
import folium
import gradio as gr
import tempfile
import torch
from datetime import datetime
import numpy as np
from gtts import gTTS
from googlemaps import Client as GoogleMapsClient
from diffusers import StableDiffusion3Pipeline
import concurrent.futures
from PIL import Image
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.agents import Tool, initialize_agent
from huggingface_hub import login
# Check if the token is already set in the environment variables
hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
# If the token is not set, prompt for it (this should be done securely)
print("Please set your Hugging Face token in the environment variables.")
else:
# Login using the token
login(token=hf_token)
# Your application logic goes here
print("Logged in successfully to Hugging Face Hub!")
# Set up logging
logging.basicConfig(level=logging.DEBUG)
# Initialize OpenAI embeddings
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
# Initialize Pinecone
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
index_name = "omaha-details"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
# Initialize ChatOpenAI model
chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'],
temperature=0, model='gpt-4o')
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=10,
return_messages=True
)
def get_current_time_and_date():
now = datetime.now()
return now.strftime("%Y-%m-%d %H:%M:%S")
# Example usage
current_time_and_date = get_current_time_and_date()
# def fetch_local_events():
# api_key = os.environ['SERP_API']
# url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}'
# response = requests.get(url)
# if response.status_code == 200:
# events_results = response.json().get("events_results", [])
# events_html = """
# <h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
# <style>
# .event-item {
# font-family: 'Verdana', sans-serif;
# color: #333;
# background-color: #f0f8ff;
# margin-bottom: 15px;
# padding: 10px;
# border: 1px solid #ddd;
# border-radius: 5px;
# border: 2px solid red; /* Added red border */
# transition: box-shadow 0.3s ease, background-color 0.3s ease;
# font-weight: bold;
# }
# .event-item:hover {
# box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
# background-color: #e6f7ff;
# }
# .event-item a {
# color: #1E90FF;
# text-decoration: none;
# font-weight: bold;
# }
# .event-item a:hover {
# text-decoration: underline;
# }
# .event-preview {
# position: absolute;
# display: none;
# border: 1px solid #ccc;
# border-radius: 5px;
# box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
# background-color: white;
# z-index: 1000;
# max-width: 300px;
# padding: 10px;
# font-family: 'Verdana', sans-serif;
# color: #333;
# }
# </style>
# <script>
# function showPreview(event, previewContent) {
# var previewBox = document.getElementById('event-preview');
# previewBox.innerHTML = previewContent;
# previewBox.style.left = event.pageX + 'px';
# previewBox.style.top = event.pageY + 'px';
# previewBox.style.display = 'block';
# }
# function hidePreview() {
# var previewBox = document.getElementById('event-preview');
# previewBox.style.display = 'none';
# }
# </script>
# <div id="event-preview" class="event-preview"></div>
# """
# for index, event in enumerate(events_results):
# title = event.get("title", "No title")
# date = event.get("date", "No date")
# location = event.get("address", "No location")
# link = event.get("link", "#")
# events_html += f"""
# <div class="event-item" onmouseover="showPreview(event, 'Date: {date}<br>Location: {location}')" onmouseout="hidePreview()">
# <a href='{link}' target='_blank'>{index + 1}. {title}</a>
# <p>Date: {date}<br>Location: {location}</p>
# </div>
# """
# return events_html
# else:
# return "<p>Failed to fetch local events</p>"
def fetch_local_events():
api_key = os.environ['SERP_API']
url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}'
response = requests.get(url)
if response.status_code == 200:
events_results = response.json().get("events_results", [])
events_html = """
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
<style>
.event-item {
font-family: 'Verdana', sans-serif;
color: #333;
background-color: #f0f8ff;
margin-bottom: 15px;
padding: 10px;
border-radius: 5px;
transition: box-shadow 0.3s ease, background-color 0.3s ease;
font-weight: bold;
}
.event-item:hover {
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
background-color: #e6f7ff;
}
.event-item a {
color: #1E90FF;
text-decoration: none;
font-weight: bold;
}
.event-item a:hover {
text-decoration: underline;
}
.event-preview {
position: absolute;
display: none;
border: 1px solid #ccc;
border-radius: 5px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
background-color: white;
z-index: 1000;
max-width: 300px;
padding: 10px;
font-family: 'Verdana', sans-serif;
color: #333;
}
</style>
<script>
function showPreview(event, previewContent) {
var previewBox = document.getElementById('event-preview');
previewBox.innerHTML = previewContent;
previewBox.style.left = event.pageX + 'px';
previewBox.style.top = event.pageY + 'px';
previewBox.style.display = 'block';
}
function hidePreview() {
var previewBox = document.getElementById('event-preview');
previewBox.style.display = 'none';
}
</script>
<div id="event-preview" class="event-preview"></div>
"""
for index, event in enumerate(events_results):
title = event.get("title", "No title")
date = event.get("date", "No date")
location = event.get("address", "No location")
link = event.get("link", "#")
events_html += f"""
<div class="event-item" onmouseover="showPreview(event, 'Date: {date}<br>Location: {location}')" onmouseout="hidePreview()">
<a href='{link}' target='_blank'>{index + 1}. {title}</a>
<p>Date: {date}<br>Location: {location}</p>
</div>
"""
return events_html
else:
return "<p>Failed to fetch local events</p>"
# def fetch_local_weather():
# try:
# api_key = os.environ['WEATHER_API']
# url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/omaha?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
# response = requests.get(url)
# response.raise_for_status()
# jsonData = response.json()
# current_conditions = jsonData.get("currentConditions", {})
# temp_celsius = current_conditions.get("temp", "N/A")
# if temp_celsius != "N/A":
# temp_fahrenheit = int((temp_celsius * 9/5) + 32)
# else:
# temp_fahrenheit = "N/A"
# condition = current_conditions.get("conditions", "N/A")
# humidity = current_conditions.get("humidity", "N/A")
# weather_html = f"""
# <div class="weather-theme">
# <h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
# <div class="weather-content">
# <div class="weather-icon">
# <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
# </div>
# <div class="weather-details">
# <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
# <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
# <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
# </div>
# </div>
# </div>
# <style>
# .weather-theme {{
# animation: backgroundAnimation 10s infinite alternate;
# border: 2px solid red; /* Added red border */
# border-radius: 10px;
# padding: 10px;
# margin-bottom: 15px;
# background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
# background-size: 400% 400%;
# box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
# transition: box-shadow 0.3s ease, background-color 0.3s ease;
# }}
# .weather-theme:hover {{
# box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
# background-position: 100% 100%;
# }}
# @keyframes backgroundAnimation {{
# 0% {{ background-position: 0% 50%; }}
# 100% {{ background-position: 100% 50%; }}
# }}
# .weather-content {{
# display: flex;
# align-items: center;
# }}
# .weather-icon {{
# flex: 1;
# }}
# .weather-details {{
# flex: 3;
# }}
# </style>
# """
# return weather_html
# except requests.exceptions.RequestException as e:
# return f"<p>Failed to fetch local weather: {e}</p>"
def fetch_local_weather():
try:
api_key = os.environ['WEATHER_API']
url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/omaha?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
response = requests.get(url)
response.raise_for_status()
jsonData = response.json()
current_conditions = jsonData.get("currentConditions", {})
temp_celsius = current_conditions.get("temp", "N/A")
if temp_celsius != "N/A":
temp_fahrenheit = int((temp_celsius * 9/5) + 32)
else:
temp_fahrenheit = "N/A"
condition = current_conditions.get("conditions", "N/A")
humidity = current_conditions.get("humidity", "N/A")
weather_html = f"""
<div class="weather-theme">
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
<div class="weather-content">
<div class="weather-icon">
<img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
</div>
<div class="weather-details">
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
</div>
</div>
</div>
<style>
.weather-theme {{
animation: backgroundAnimation 10s infinite alternate;
border-radius: 10px;
padding: 10px;
margin-bottom: 15px;
background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
background-size: 400% 400%;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
transition: box-shadow 0.3s ease, background-color 0.3s ease;
}}
.weather-theme:hover {{
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
background-position: 100% 100%;
}}
@keyframes backgroundAnimation {{
0% {{ background-position: 0% 50%; }}
100% {{ background-position: 100% 50%; }}
}}
.weather-content {{
display: flex;
align-items: center;
}}
.weather-icon {{
flex: 1;
}}
.weather-details {{
flex: 3;
}}
</style>
"""
return weather_html
except requests.exceptions.RequestException as e:
return f"<p>Failed to fetch local weather: {e}</p>"
def get_weather_icon(condition):
condition_map = {
"Clear": "c01d",
"Partly Cloudy": "c02d",
"Cloudy": "c03d",
"Overcast": "c04d",
"Mist": "a01d",
"Patchy rain possible": "r01d",
"Light rain": "r02d",
"Moderate rain": "r03d",
"Heavy rain": "r04d",
"Snow": "s01d",
"Thunderstorm": "t01d",
"Fog": "a05d",
}
return condition_map.get(condition, "c04d")
# Update prompt templates to include fetched details
current_time_and_date = get_current_time_and_date()
# Define prompt templates
template1 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on weather being a sunny bright day and the today's date is 20th june 2024, use the following pieces of context,
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
event type and description. Always say "It was my pleasure!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""
template2 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on today's weather being a sunny bright day and today's date is 20th june 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
# Define the retrieval QA chain
def build_qa_chain(prompt_template):
qa_chain = RetrievalQA.from_chain_type(
llm=chat_model,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt_template}
)
tools = [
Tool(
name='Knowledge Base',
func=qa_chain,
description='Use this tool when answering general knowledge queries to get more information about the topic'
)
]
return qa_chain, tools
# Define the agent initializer
def initialize_agent_with_prompt(prompt_template):
qa_chain, tools = build_qa_chain(prompt_template)
agent = initialize_agent(
agent='chat-conversational-react-description',
tools=tools,
llm=chat_model,
verbose=False,
max_iteration=5,
early_stopping_method='generate',
memory=conversational_memory
)
return agent
# Define the function to generate answers
def generate_answer(message, choice):
logging.debug(f"generate_answer called with prompt_choice: {choice}")
if choice == "Details":
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
elif choice == "Conversational":
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
else:
logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
response = agent(message)
# Extract addresses for mapping regardless of the choice
addresses = extract_addresses(response['output'])
return response['output'], addresses
def bot(history, choice):
if not history:
return history
response, addresses = generate_answer(history[-1][0], choice)
history[-1][1] = ""
# Generate audio for the entire response in a separate thread
with concurrent.futures.ThreadPoolExecutor() as executor:
audio_future = executor.submit(generate_audio_elevenlabs, response)
for character in response:
history[-1][1] += character
time.sleep(0.05) # Adjust the speed of text appearance
yield history, None
audio_path = audio_future.result()
yield history, audio_path
def add_message(history, message):
history.append((message, None))
return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def extract_addresses(response):
if not isinstance(response, str):
response = str(response)
address_patterns = [
r'([A-Z].*,\sOmaha,\sNE\s\d{5})',
r'(\d{4}\s.*,\sOmaha,\sNE\s\d{5})',
r'([A-Z].*,\sNE\s\d{5})',
r'([A-Z].*,.*\sSt,\sOmaha,\sNE\s\d{5})',
r'([A-Z].*,.*\sStreets,\sOmaha,\sNE\s\d{5})',
r'(\d{2}.*\sStreets)',
r'([A-Z].*\s\d{2},\sOmaha,\sNE\s\d{5})'
]
addresses = []
for pattern in address_patterns:
addresses.extend(re.findall(pattern, response))
return addresses
all_addresses = []
def generate_map(location_names):
global all_addresses
all_addresses.extend(location_names)
api_key = os.environ['GOOGLEMAPS_API_KEY']
gmaps = GoogleMapsClient(key=api_key)
m = folium.Map(location=[41.2565, -95.9345], zoom_start=12)
for location_name in all_addresses:
geocode_result = gmaps.geocode(location_name)
if geocode_result:
location = geocode_result[0]['geometry']['location']
folium.Marker(
[location['lat'], location['lng']],
tooltip=f"{geocode_result[0]['formatted_address']}"
).add_to(m)
map_html = m._repr_html_()
return map_html
# def fetch_local_news():
# api_key = os.environ['SERP_API']
# url = f'https://serpapi.com/search.json?engine=google_news&q=omaha headline&api_key={api_key}'
# response = requests.get(url)
# if response.status_code == 200:
# results = response.json().get("news_results", [])
# news_html = """
# <h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Omaha Today </h2>
# <style>
# .news-item {
# font-family: 'Verdana', sans-serif;
# color: #333;
# background-color: #f0f8ff;
# margin-bottom: 15px;
# padding: 10px;
# border: 2px solid red; /* Added red border */
# border-radius: 5px;
# transition: box-shadow 0.3s ease, background-color 0.3s ease;
# font-weight: bold;
# }
# .news-item:hover {
# box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
# background-color: #e6f7ff;
# }
# .news-item a {
# color: #1E90FF;
# text-decoration: none;
# font-weight: bold;
# }
# .news-item a:hover {
# text-decoration: underline;
# }
# .news-preview {
# position: absolute;
# display: none;
# border: 1px solid #ccc;
# border-radius: 5px;
# box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
# background-color: white;
# z-index: 1000;
# max-width: 300px;
# padding: 10px;
# font-family: 'Verdana', sans-serif;
# color: #333;
# }
# </style>
# <script>
# function showPreview(event, previewContent) {
# var previewBox = document.getElementById('news-preview');
# previewBox.innerHTML = previewContent;
# previewBox.style.left = event.pageX + 'px';
# previewBox.style.top = event.pageY + 'px';
# previewBox.style.display = 'block';
# }
# function hidePreview() {
# var previewBox = document.getElementById('news-preview');
# previewBox.style.display = 'none';
# }
# </script>
# <div id="news-preview" class="news-preview"></div>
# """
# for index, result in enumerate(results[:7]):
# title = result.get("title", "No title")
# link = result.get("link", "#")
# snippet = result.get("snippet", "")
# news_html += f"""
# <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
# <a href='{link}' target='_blank'>{index + 1}. {title}</a>
# <p>{snippet}</p>
# </div>
# """
# return news_html
# else:
# return "<p>Failed to fetch local news</p>"
def fetch_local_news():
api_key = os.environ['SERP_API']
url = f'https://serpapi.com/search.json?engine=google_news&q=omaha headline&api_key={api_key}'
response = requests.get(url)
if response.status_code == 200:
results = response.json().get("news_results", [])
news_html = """
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Omaha Today</h2>
<style>
.news-item {
font-family: 'Verdana', sans-serif;
color: #333;
background-color: #f0f8ff;
margin-bottom: 15px;
padding: 10px;
border-radius: 5px;
transition: box-shadow 0.3s ease, background-color 0.3s ease;
font-weight: bold;
}
.news-item:hover {
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
background-color: #e6f7ff;
}
.news-item a {
color: #1E90FF;
text-decoration: none;
font-weight: bold;
}
.news-item a:hover {
text-decoration: underline;
}
.news-preview {
position: absolute;
display: none;
border: 1px solid #ccc;
border-radius: 5px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
background-color: white;
z-index: 1000;
max-width: 300px;
padding: 10px;
font-family: 'Verdana', sans-serif;
color: #333;
}
</style>
<script>
function showPreview(event, previewContent) {
var previewBox = document.getElementById('news-preview');
previewBox.innerHTML = previewContent;
previewBox.style.left = event.pageX + 'px';
previewBox.style.top = event.pageY + 'px';
previewBox.style.display = 'block';
}
function hidePreview() {
var previewBox = document.getElementById('news-preview');
previewBox.style.display = 'none';
}
</script>
<div id="news-preview" class="news-preview"></div>
"""
for index, result in enumerate(results[:7]):
title = result.get("title", "No title")
link = result.get("link", "#")
snippet = result.get("snippet", "")
news_html += f"""
<div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
<a href='{link}' target='_blank'>{index + 1}. {title}</a>
<p>{snippet}</p>
</div>
"""
return news_html
else:
return "<p>Failed to fetch local news</p>"
# Voice Control
import numpy as np
import torch
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype,
#low_cpu_mem_usage=True,
use_safetensors=True).to(device)
processor = AutoProcessor.from_pretrained(model_id)
# Optimized ASR pipeline
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
base_audio_drive = "/data/audio"
import numpy as np
def transcribe_function(stream, new_chunk):
try:
sr, y = new_chunk[0], new_chunk[1]
except TypeError:
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
return stream, "", None
y = y.astype(np.float32) / np.max(np.abs(y))
if stream is not None:
stream = np.concatenate([stream, y])
else:
stream = y
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
full_text = result.get("text", "")
return stream, full_text, result
def update_map_with_response(history):
if not history:
return ""
response = history[-1][1]
addresses = extract_addresses(response)
return generate_map(addresses)
def clear_textbox():
return ""
def show_map_if_details(history,choice):
if choice in ["Details", "Conversational"]:
return gr.update(visible=True), update_map_with_response(history)
else:
return gr.update(visible(False), "")
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'd9MIrwLnvDeH7aZb61E9' # Replace with your voice ID
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 1.0,
"similarity_boost": 0.0,
"style": 0.60, # Adjust style for more romantic tone
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
f.write(chunk)
temp_audio_path = f.name
logging.debug(f"Audio saved to {temp_audio_path}")
return temp_audio_path
else:
logging.error(f"Error generating audio: {response.text}")
return None
# Stable Diffusion setup
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
def generate_image(prompt):
image = pipe(
prompt,
negative_prompt="",
num_inference_steps=28,
guidance_scale=3.0,
).images[0]
return image
# Hardcoded prompt for image generation
# hardcoded_prompt_1 = "Useing The top events like 'Summer Art Festival'and Date - 06/19/2024 ,Weather-Sunny Bright Day.Create Highly Visually Compelling High Resolution and High Quality Photographics Advatizement for 'Toyota'"
hardcoded_prompt_1="Give a high quality photograph of a great looking red 2026 toyota coupe against a skyline setting in th night, michael mann style in omaha enticing the consumer to buy this product"
# hardcoded_prompt_2 = "Create a vibrant poster of Nebraska with beautiful weather, featuring picturesque landscapes, clear skies, and the word 'Nebraska' prominently displayed."
hardcoded_prompt_2="A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
with gr.Row():
with gr.Column():
state = gr.State()
chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
bot_msg = chat_msg.then(bot, [chatbot, choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
chatbot.like(print_like_dislike, None, None)
clear_button = gr.Button("Clear")
clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")
gr.Markdown("<h1 style='color: red;'>Map</h1>", elem_id="location-markdown")
location_output = gr.HTML()
bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output])
with gr.Column():
weather_output = gr.HTML(value=fetch_local_weather())
news_output = gr.HTML(value=fetch_local_news())
gr.Markdown("<h1 style='color: red;'>Suggested Events</h1>", elem_id="events-markdown")
news_output = gr.HTML(value=fetch_local_events())
with gr.Column():
gr.Markdown("<h1 style='color: red;'>Sponsored</h1>", elem_id="image-markdown")
image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
demo.queue()
demo.launch(share=True)
|