Spaces:
Paused
Paused
File size: 21,386 Bytes
2ea6305 9965e97 011279d 9965e97 6efc962 011279d 9965e97 011279d 9965e97 011279d 9965e97 011279d 9965e97 011279d 9965e97 011279d 9965e97 011279d 9965e97 7136172 9965e97 64844ba 22676f3 fa3a33c a5dbb66 9965e97 5e2ba8b 9965e97 5e2ba8b 011279d 9965e97 cbe6f2e 011279d 9965e97 08ea6d3 9965e97 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 91fa1a7 9965e97 c2c9ec8 9965e97 011279d 9965e97 ab83f08 9965e97 226062a 9965e97 ab83f08 9965e97 ab83f08 9965e97 ab83f08 9965e97 b5175c0 daab4f0 b5175c0 daab4f0 b5175c0 daab4f0 b5175c0 daab4f0 b5175c0 daab4f0 b5175c0 daab4f0 b5175c0 9965e97 b5175c0 9965e97 82ad723 ecd1550 14570fe 5c732dd 011279d 5c732dd cc16fb5 c5889cd cc16fb5 6ce2755 cc16fb5 69fedc7 cc16fb5 69fedc7 cc16fb5 011279d 9965e97 5f9aba6 9965e97 075192f afbcc05 075192f afbcc05 075192f 3ef5338 91fe176 9965e97 91fe176 9965e97 ac6c80d 9965e97 ac6c80d 9965e97 ac6c80d 9965e97 ac6c80d 9965e97 82ad723 cc16fb5 ac6c80d cc16fb5 5fbe963 91fe176 ac6c80d 91fe176 9965e97 011279d 7dc0979 011279d 9965e97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
import os
import re
import time
import requests
import logging
import folium
import gradio as gr
import tempfile
import torch
import numpy as np
from gtts import gTTS
from googlemaps import Client as GoogleMapsClient
from diffusers import StableDiffusion3Pipeline
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.agents import Tool, initialize_agent
# Set up logging
logging.basicConfig(level=logging.DEBUG)
# Initialize OpenAI embeddings
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
# Initialize Pinecone
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
index_name = "omaha-details"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
# Initialize ChatOpenAI model
chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'],
temperature=0, model='gpt-4o')
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=10,
return_messages=True
)
# Define prompt templates
template1 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on today's weather being a sunny bright day and the date is 17th June 2024, use the following pieces of context,
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
event type and description. Always say "It was my pleasure!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""
template2 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on today's weather being a sunny bright day and the date is 17th June 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
# Define the retrieval QA chain
def build_qa_chain(prompt_template):
qa_chain = RetrievalQA.from_chain_type(
llm=chat_model,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt_template}
)
tools = [
Tool(
name='Knowledge Base',
func=qa_chain,
description='Use this tool when answering general knowledge queries to get more information about the topic'
)
]
return qa_chain, tools
# Define the agent initializer
def initialize_agent_with_prompt(prompt_template):
qa_chain, tools = build_qa_chain(prompt_template)
agent = initialize_agent(
agent='chat-conversational-react-description',
tools=tools,
llm=chat_model,
verbose=False,
max_iteration=5,
early_stopping_method='generate',
memory=conversational_memory
)
return agent
# Define the function to generate answers
def generate_answer(message, choice):
logging.debug(f"generate_answer called with prompt_choice: {choice}")
if choice == "Details":
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
elif choice == "Conversational":
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
else:
logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
response = agent(message)
# Extract addresses for mapping regardless of the choice
addresses = extract_addresses(response['output'])
return response['output'], addresses
def bot(history, choice):
if not history:
return history
response, addresses = generate_answer(history[-1][0], choice)
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
if addresses:
return history, addresses
def add_message(history, message):
history.append((message, None))
return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def extract_addresses(response):
if not isinstance(response, str):
response = str(response)
address_patterns = [
r'([A-Z].*,\sOmaha,\sNE\s\d{5})',
r'(\d{4}\s.*,\sOmaha,\sNE\s\d{5})',
r'([A-Z].*,\sNE\s\d{5})',
r'([A-Z].*,.*\sSt,\sOmaha,\sNE\s\d{5})',
r'([A-Z].*,.*\sStreets,\sOmaha,\sNE\s\d{5})',
r'(\d{2}.*\sStreets)',
r'([A-Z].*\s\d{2},\sOmaha,\sNE\s\d{5})'
]
addresses = []
for pattern in address_patterns:
addresses.extend(re.findall(pattern, response))
return addresses
all_addresses = []
def generate_map(location_names):
global all_addresses
all_addresses.extend(location_names)
api_key = os.environ['GOOGLEMAPS_API_KEY']
gmaps = GoogleMapsClient(key=api_key)
m = folium.Map(location=[41.2565, -95.9345], zoom_start=12)
for location_name in all_addresses:
geocode_result = gmaps.geocode(location_name)
if geocode_result:
location = geocode_result[0]['geometry']['location']
folium.Marker(
[location['lat'], location['lng']],
tooltip=f"{geocode_result[0]['formatted_address']}"
).add_to(m)
map_html = m._repr_html_()
return map_html
def fetch_local_news():
api_key = os.environ['SERP_API']
url = f'https://serpapi.com/search.json?engine=google_news&q=ohama headline&api_key={api_key}'
response = requests.get(url)
if response.status_code == 200:
results = response.json().get("news_results", [])
news_html = """
<h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Omaha Today Headlines</h2>
<style>
.news-item {
font-family: 'Verdana', sans-serif;
color: #333;
background-color: #f0f8ff;
margin-bottom: 15px;
padding: 10px;
border: 1px solid #ddd;
border-radius: 5px;
transition: box-shadow 0.3s ease, background-color 0.3s ease;
font-weight: bold;
}
.news-item:hover {
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
background-color: #e6f7ff;
}
.news-item a {
color: #1E90FF;
text-decoration: none;
font-weight: bold;
}
.news-item a:hover {
text-decoration: underline;
}
.news-preview {
position: absolute;
display: none;
border: 1px solid #ccc;
border-radius: 5px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
background-color: white;
z-index: 1000;
max-width: 300px;
padding: 10px;
font-family: 'Verdana', sans-serif;
color: #333;
}
</style>
<script>
function showPreview(event, previewContent) {
var previewBox = document.getElementById('news-preview');
previewBox.innerHTML = previewContent;
previewBox.style.left = event.pageX + 'px';
previewBox.style.top = event.pageY + 'px';
previewBox.style.display = 'block';
}
function hidePreview() {
var previewBox = document.getElementById('news-preview');
previewBox.style.display = 'none';
}
</script>
<div id="news-preview" class="news-preview"></div>
"""
for index, result in enumerate(results[:7]):
title = result.get("title", "No title")
link = result.get("link", "#")
snippet = result.get("snippet", "")
news_html += f"""
<div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
<a href='{link}' target='_blank'>{index + 1}. {title}</a>
<p>{snippet}</p>
</div>
"""
return news_html
else:
return "<p>Failed to fetch local news</p>"
def fetch_local_events():
api_key = os.environ['SERP_API']
url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}'
response = requests.get(url)
if response.status_code == 200:
events_results = response.json().get("events_results", [])
events_html = """
<h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
<style>
.event-item {
font-family: 'Verdana', sans-serif;
color: #333;
background-color: #f0f8ff;
margin-bottom: 15px;
padding: 10px;
border: 1px solid #ddd;
border-radius: 5px;
transition: box-shadow 0.3s ease, background-color 0.3s ease;
font-weight: bold;
}
.event-item:hover {
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
background-color: #e6f7ff;
}
.event-item a {
color: #1E90FF;
text-decoration: none;
font-weight: bold;
}
.event-item a:hover {
text-decoration: underline;
}
.event-preview {
position: absolute;
display: none;
border: 1px solid #ccc;
border-radius: 5px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
background-color: white;
z-index: 1000;
max-width: 300px;
padding: 10px;
font-family: 'Verdana', sans-serif;
color: #333;
}
</style>
<script>
function showPreview(event, previewContent) {
var previewBox = document.getElementById('event-preview');
previewBox.innerHTML = previewContent;
previewBox.style.left = event.pageX + 'px';
previewBox.style.top = event.pageY + 'px';
previewBox.style.display = 'block';
}
function hidePreview() {
var previewBox = document.getElementById('event-preview');
previewBox.style.display = 'none';
}
</script>
<div id="event-preview" class="event-preview"></div>
"""
for index, event in enumerate(events_results):
title = event.get("title", "No title")
date = event.get("date", "No date")
location = event.get("address", "No location")
link = event.get("link", "#")
events_html += f"""
<div class="event-item" onmouseover="showPreview(event, 'Date: {date}<br>Location: {location}')" onmouseout="hidePreview()">
<a href='{link}' target='_blank'>{index + 1}. {title}</a>
<p>Date: {date}<br>Location: {location}</p>
</div>
"""
return events_html
else:
return "<p>Failed to fetch local events</p>"
def fetch_local_weather():
try:
api_key = os.environ['WEATHER_API']
url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/omaha?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
response = requests.get(url)
response.raise_for_status()
jsonData = response.json()
current_conditions = jsonData.get("currentConditions", {})
temp = current_conditions.get("temp", "N/A")
condition = current_conditions.get("conditions", "N/A")
humidity = current_conditions.get("humidity", "N/A")
weather_html = f"""
<div class="weather-theme">
<h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
<div class="weather-content">
<div class="weather-icon">
<img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
</div>
<div class="weather-details">
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp}°C</p>
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
</div>
</div>
</div>
<style>
.weather-theme {{
animation: backgroundAnimation 10s infinite alternate;
border: 1px solid #ddd;
border-radius: 10px;
padding: 10px;
margin-bottom: 15px;
background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
background-size: 400% 400%;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
transition: box-shadow 0.3s ease, background-color 0.3s ease;
}}
.weather-theme:hover {{
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
background-position: 100% 100%;
}}
@keyframes backgroundAnimation {{
0% {{ background-position: 0% 50%; }}
100% {{ background-position: 100% 50%; }}
}}
.weather-content {{
display: flex;
align-items: center;
}}
.weather-icon {{
flex: 1;
}}
.weather-details {{
flex: 3;
}}
</style>
"""
return weather_html
except requests.exceptions.RequestException as e:
return f"<p>Failed to fetch local weather: {e}</p>"
def get_weather_icon(condition):
condition_map = {
"Clear": "c01d",
"Partly Cloudy": "c02d",
"Cloudy": "c03d",
"Overcast": "c04d",
"Mist": "a01d",
"Patchy rain possible": "r01d",
"Light rain": "r02d",
"Moderate rain": "r03d",
"Heavy rain": "r04d",
"Snow": "s01d",
"Thunderstorm": "t01d",
"Fog": "a05d",
}
return condition_map.get(condition, "c01d")
def update_map_with_response(history):
if not history:
return ""
response = history[-1][1]
addresses = extract_addresses(response)
return generate_map(addresses)
def clear_textbox():
return ""
def show_map_if_details(history,choice):
if choice in ["Details", "Conversational"]:
return gr.update(visible=True), update_map_with_response(history)
else:
return gr.update(visible(False), "")
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'SHZHI20rSPDR3iE8SvZ0' # Replace with your voice ID
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 0.7,
"similarity_boost": 0.5,
"style": 0.50, # Adjust style for more romantic tone
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
f.write(chunk)
temp_audio_path = f.name
logging.debug(f"Audio saved to {temp_audio_path}")
return temp_audio_path
else:
logging.error(f"Error generating audio: {response.text}")
return None
# Stable Diffusion setup
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
def generate_image(prompt):
image = pipe(
prompt,
negative_prompt="",
num_inference_steps=28,
guidance_scale=7.0,
).images[0]
return image
# Hardcoded prompt for image generation
hardcoded_prompt = "A cat holding a sign that says hello world"
# Gradio Blocks interface
with gr.Blocks(theme='rawrsor1/Everforest') as demo:
with gr.Row():
with gr.Column():
gr.HTML('''
<div style="animation: fadeIn 2s ease-in-out infinite alternate;">
<h1 style="font-size: 4em; text-align: center; color: #4CAF50;">Welcome to Omaha Events</h1>
</div>
<style>
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
</style>
''')
chatbot = gr.Chatbot([], elem_id="chatbot", bubble_full_width=False)
with gr.Column():
weather_output = gr.HTML(value=fetch_local_weather())
with gr.Column():
news_output = gr.HTML(value=fetch_local_news())
def setup_ui():
state = gr.State()
with gr.Row():
with gr.Column():
gr.Markdown("<h1>Choose the prompt</h1>", elem_id="prompt-markdown")
choice = gr.Radio(label="Choose a prompt", choices=["Details", "Conversational"], value="Details")
with gr.Column(): # Larger scale for the right column
gr.Markdown("<h1>Enter the query / Voice Output</h1>", elem_id="query-markdown")
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="Transcription")
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
bot_msg = chat_msg.then(bot, [chatbot, choice], chatbot, api_name="bot_response")
bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False), None, [chat_input])
chatbot.like(print_like_dislike, None, None)
clear_button = gr.Button("Clear")
clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
with gr.Column(): # Smaller scale for the left column
gr.Markdown("<h1>Stream your Voice</h1>", elem_id="voice-markdown")
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")
with gr.Row():
with gr.Column():
gr.Markdown("<h1>Locate the Events</h1>", elem_id="location-markdown")
location_output = gr.HTML()
bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output])
with gr.Column():
gr.Markdown("<h1>Listen the audio</h1>", elem_id="audio-markdown")
audio_output = gr.Audio()
bot_msg_audio = bot_msg.then(lambda history: generate_audio_elevenlabs(history[-1][1]), chatbot, audio_output)
with gr.Column():
gr.Markdown("<h1>Local Events</h1>", elem_id="events-markdown")
news_output = gr.HTML(value=fetch_local_events())
with gr.Column():
gr.Markdown("<h1>Generated Image</h1>", elem_id="image-markdown")
image_output = gr.Image(value=generate_image(hardcoded_prompt))
setup_ui()
demo.queue()
demo.launch(share=True)
|