File size: 38,599 Bytes
939c5b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
986787e
0cf6bf3
939c5b6
c8f1081
 
 
 
 
 
 
 
 
 
 
60b1ab3
5203bf1
 
3fa8d86
 
 
6a1f212
939c5b6
 
 
 
 
 
 
 
6a1f212
939c5b6
9b5f7bf
5203bf1
3fa8d86
869cf1f
 
9b5f7bf
2f85060
939c5b6
75eaefb
939c5b6
 
 
 
 
 
 
 
 
c8f1081
a140def
 
939c5b6
a140def
939c5b6
a140def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52b0001
9a7ba63
a140def
 
 
 
 
52b0001
9a7ba63
52b0001
 
9a7ba63
c8f1081
 
1e557c0
c8f1081
1e557c0
c8f1081
 
a167bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
c8f1081
 
 
86bd1dc
c8f1081
 
 
 
86bd1dc
c8f1081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52b0001
c8f1081
 
 
 
 
2120faf
c8f1081
 
75eaefb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5203bf1
6a1f212
 
 
 
 
c160b01
24b3ff4
 
9abed74
24b3ff4
 
612163b
5203bf1
6a1f212
 
 
 
 
 
 
 
 
 
 
 
 
 
c8f1081
 
 
c7cfbcf
 
b2042b7
c7cfbcf
 
 
 
 
 
 
2120faf
 
b2042b7
5203bf1
2120faf
5203bf1
52b0001
caa0993
9a94403
c8f1081
e668d96
 
a140def
d001e3d
 
a140def
d001e3d
 
 
 
 
 
 
a140def
d001e3d
 
 
 
a140def
d001e3d
 
60b1ab3
d001e3d
3ccf668
e668d96
3bc821d
e668d96
6ef7b9a
52b0001
 
9a7ba63
52b0001
 
 
 
 
 
 
 
 
 
 
22a9756
8c7f07f
 
52b0001
 
 
 
 
9a7ba63
52b0001
9a7ba63
52b0001
 
 
 
 
 
 
9a90b7a
52b0001
 
 
 
800db56
 
 
 
 
52b0001
 
 
9a7ba63
6ef7b9a
 
 
 
47c1e27
6ef7b9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbe0a00
1c2e53d
 
 
 
 
 
 
 
 
 
 
60b1ab3
 
 
1c2e53d
977e15f
986787e
 
 
 
 
 
977e15f
986787e
c2184af
 
 
 
986787e
6ef7b9a
986787e
60b1ab3
986787e
 
a1ccce8
a1791d2
1c2e53d
60b1ab3
 
52b0001
 
 
 
 
 
9a7ba63
c85f33f
 
 
977e15f
52b0001
 
 
5203bf1
9a7ba63
52b0001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a140def
52b0001
 
a140def
 
 
52b0001
a140def
 
 
 
 
 
 
 
52b0001
 
 
9a7ba63
6a1f212
52b0001
9a7ba63
52b0001
 
 
9a7ba63
52b0001
 
9a7ba63
52b0001
 
 
 
 
9a7ba63
52b0001
9a7ba63
52b0001
 
 
9a7ba63
52b0001
 
 
caa0993
52b0001
9a7ba63
52b0001
f8395c3
52b0001
 
 
9a7ba63
52b0001
 
 
 
 
 
 
 
9a7ba63
52b0001
 
9a7ba63
52b0001
9a7ba63
52b0001
 
 
 
9a7ba63
52b0001
 
 
9a7ba63
52b0001
 
 
9a7ba63
52b0001
 
 
9a7ba63
52b0001
 
 
9a7ba63
52b0001
 
9a7ba63
52b0001
 
9a7ba63
52b0001
 
 
 
 
 
 
 
 
 
 
 
 
 
9a7ba63
52b0001
 
9a7ba63
52b0001
 
 
 
9a7ba63
52b0001
 
 
9a7ba63
52b0001
 
 
9a7ba63
52b0001
 
9a7ba63
52b0001
 
9a7ba63
52b0001
 
 
 
 
 
 
 
9a7ba63
52b0001
 
 
9a7ba63
52b0001
 
 
 
 
9a7ba63
60b1ab3
 
 
c8f1081
 
 
 
1ce8e85
c8f1081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a140def
c8f1081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c82efd7
c8f1081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709dafc
c8f1081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9dad18
8285c43
 
b2042b7
8285c43
 
 
 
 
60b1ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4acbdde
 
 
 
 
 
 
b2042b7
4acbdde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5203bf1
 
 
4acbdde
 
 
 
 
 
5203bf1
c8f1081
4acbdde
 
 
 
 
 
 
 
 
8285c43
 
 
6a44ec2
 
 
 
 
72ae864
8285c43
4acbdde
 
 
 
 
 
 
046760c
4acbdde
 
a26f66e
6a1f212
 
 
 
5203bf1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
import gradio as gr
import requests
import os
import time
import re
import logging
import tempfile
import folium
import concurrent.futures
import torch
from PIL import Image
from datetime import datetime
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from googlemaps import Client as GoogleMapsClient
from gtts import gTTS
from diffusers import StableDiffusionPipeline
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from huggingface_hub import login
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
from scipy.io.wavfile import write as write_wav
from pydub import AudioSegment
from string import punctuation
import librosa
from pathlib import Path
import torchaudio
import numpy as np


# Neo4j imports
from langchain.chains import GraphCypherQAChain
from langchain_community.graphs import Neo4jGraph
from langchain_community.document_loaders import HuggingFaceDatasetLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
from serpapi.google_search import GoogleSearch

# Set environment variables for CUDA
os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'


hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
    print("Please set your Hugging Face token in the environment variables.")
else:
    login(token=hf_token)

logging.basicConfig(level=logging.DEBUG)


embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])


# Pinecone setup
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])

index_name = "radardata07242024"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})

chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')

conversational_memory = ConversationBufferWindowMemory(
    memory_key='chat_history',
    k=10,
    return_messages=True
)

# Prompt templates
def get_current_date():
    return datetime.now().strftime("%B %d, %Y")

current_date = get_current_date()

template1 = f"""As an expert concierge in Birmingham, Alabama, known for being a helpful and renowned guide, I am here to assist you on this sunny bright day of {current_date}. Given the current weather conditions and date, I have access to a plethora of information regarding events, places, and activities in Birmingham that can enhance your experience.
If you have any questions or need recommendations, feel free to ask. I have a wealth of knowledge of perennial events in Birmingham and can provide detailed information to ensure you make the most of your time here. Remember, I am here to assist you in any way possible.
Now, let me guide you through some of the exciting events happening today in Birmingham, Alabama:
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
If you have any specific preferences or questions about these events or any other inquiries, please feel free to ask. Remember, I am here to ensure you have a memorable and enjoyable experience in Birmingham, AL.
It was my pleasure!
{{context}}
Question: {{question}}
Helpful Answer:"""

template2 = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
"It was my pleasure!"
{{context}}
Question: {{question}}
Helpful Answer:"""

QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)

# Neo4j setup
graph = Neo4jGraph(
    url="neo4j+s://98f45cc0.databases.neo4j.io",
    username="neo4j",
    password="B_sZbapCTZoQDWj1JrhwqElsNa-jm5Zq1m_mAnyPYog"
)

# Avoid pushing the graph documents to Neo4j every time
# Only push the documents once and comment the code below after the initial push
# dataset_name = "Pijush2023/birmindata07312024"
# page_content_column = 'events_description'
# loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)
# data = loader.load()

# text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50)
# documents = text_splitter.split_documents(data)

# llm_transformer = LLMGraphTransformer(llm=chat_model)
# graph_documents = llm_transformer.convert_to_graph_documents(documents)
# graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)

class Entities(BaseModel):
    names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")

entity_prompt = ChatPromptTemplate.from_messages([
    ("system", "You are extracting organization and person entities from the text."),
    ("human", "Use the given format to extract information from the following input: {question}"),
])

entity_chain = entity_prompt | chat_model.with_structured_output(Entities)

def remove_lucene_chars(input: str) -> str:
    return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!", 
                                          "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]", 
                                          "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"', 
                                          ";": r"\;", " ": r"\ "}))

def generate_full_text_query(input: str) -> str:
    full_text_query = ""
    words = [el for el in remove_lucene_chars(input).split() if el]
    for word in words[:-1]:
        full_text_query += f" {word}~2 AND"
    full_text_query += f" {words[-1]}~2"
    return full_text_query.strip()

def structured_retriever(question: str) -> str:
    result = ""
    entities = entity_chain.invoke({"question": question})
    for entity in entities.names:
        response = graph.query(
            """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
            YIELD node,score
            CALL {
              WITH node
              MATCH (node)-[r:!MENTIONS]->(neighbor)
              RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
              UNION ALL
              WITH node
              MATCH (node)<-[r:!MENTIONS]-(neighbor)
              RETURN neighbor.id + ' - ' + type(r) + ' -> ' +  node.id AS output
            }
            RETURN output LIMIT 50
            """,
            {"query": generate_full_text_query(entity)},
        )
        result += "\n".join([el['output'] for el in response])
    return result

def retriever_neo4j(question: str):
    structured_data = structured_retriever(question)
    logging.debug(f"Structured data: {structured_data}")
    return structured_data

_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""

CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)

def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
    buffer = []
    for human, ai in chat_history:
        buffer.append(HumanMessage(content=human))
        buffer.append(AIMessage(content=ai))
    return buffer

_search_query = RunnableBranch(
    (
        RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
            run_name="HasChatHistoryCheck"
        ),
        RunnablePassthrough.assign(
            chat_history=lambda x: _format_chat_history(x["chat_history"])
        )
        | CONDENSE_QUESTION_PROMPT
        | ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
        | StrOutputParser(),
    ),
    RunnableLambda(lambda x : x["question"]),
)

# template = """Answer the question based only on the following context:
# {context}
# Question: {question}
# Use natural language and be concise.
# Answer:"""

template = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick,short ,crisp and accurate response.
"It was my pleasure!"
{{context}}
Question: {{question}}
Helpful Answer:"""

qa_prompt = ChatPromptTemplate.from_template(template)

chain_neo4j = (
    RunnableParallel(
        {
            "context": _search_query | retriever_neo4j,
            "question": RunnablePassthrough(),
        }
    )
    | qa_prompt
    | chat_model
    | StrOutputParser()
)

# Define a function to select between Pinecone and Neo4j
def generate_answer(message, choice, retrieval_mode):
    logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")

    prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2

    if retrieval_mode == "VDB":
        qa_chain = RetrievalQA.from_chain_type(
            llm=chat_model,
            chain_type="stuff",
            retriever=retriever,
            chain_type_kwargs={"prompt": prompt_template}
        )
        response = qa_chain({"query": message})
        logging.debug(f"Vector response: {response}")
        return response['result'], extract_addresses(response['result'])
    elif retrieval_mode == "KGF":
        response = chain_neo4j.invoke({"question": message})
        logging.debug(f"Knowledge-Graph response: {response}")
        return response, extract_addresses(response)
    else:
        return "Invalid retrieval mode selected.", []

def bot(history, choice, tts_choice, retrieval_mode):
    if not history:
        return history
    
    response, addresses = generate_answer(history[-1][0], choice, retrieval_mode)
    history[-1][1] = ""

    with concurrent.futures.ThreadPoolExecutor() as executor:
        if tts_choice == "Alpha":
            audio_future = executor.submit(generate_audio_elevenlabs, response)
        elif tts_choice == "Beta":
            audio_future = executor.submit(generate_audio_parler_tts, response)
        elif tts_choice == "Gamma":
            audio_future = executor.submit(generate_audio_mars5, response)

        for character in response:
            history[-1][1] += character
            time.sleep(0.05)
            yield history, None

        audio_path = audio_future.result()
        yield history, audio_path

    history.append([response, None])  # Ensure the response is added in the correct format

def add_message(history, message):
    history.append((message, None))
    return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

def extract_addresses(response):
    if not isinstance(response, str):
        response = str(response)
    address_patterns = [
        r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
        r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
        r'([A-Z].*,\sAL\s\d{5})',
        r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
        r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
        r'(\d{2}.*\sStreets)',
        r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
        r'([a-zA-Z]\s Birmingham)',
        r'([a-zA-Z].*,\sBirmingham,\sAL)',
        r'(^Birmingham,AL$)'
    ]
    addresses = []
    for pattern in address_patterns:
        addresses.extend(re.findall(pattern, response))
    return addresses

all_addresses = []

def generate_map(location_names):
    global all_addresses
    all_addresses.extend(location_names)
    
    api_key = os.environ['GOOGLEMAPS_API_KEY']
    gmaps = GoogleMapsClient(key=api_key)
    
    m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)
    
    for location_name in all_addresses:
        geocode_result = gmaps.geocode(location_name)
        if geocode_result:
            location = geocode_result[0]['geometry']['location']
            folium.Marker(
                [location['lat'], location['lng']],
                tooltip=f"{geocode_result[0]['formatted_address']}"
            ).add_to(m)
    
    map_html = m._repr_html_()
    return map_html

def fetch_local_news():
    api_key = os.environ['SERP_API']
    url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
    response = requests.get(url)
    if response.status_code == 200:
        results = response.json().get("news_results", [])
        news_html = """
        <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
        <style>
            .news-item {
                font-family: 'Verdana', sans-serif;
                color: #333;
                background-color: #f0f8ff;
                margin-bottom: 15px;
                padding: 10px;
                border-radius: 5px;
                transition: box-shadow 0.3s ease, background-color 0.3s ease;
                font-weight: bold;
            }
            .news-item:hover {
                box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
                background-color: #e6f7ff;
            }
            .news-item a {
                color: #1E90FF;
                text-decoration: none;
                font-weight: bold;
            }
            .news-item a:hover {
                text-decoration: underline;
            }
            .news-preview {
                position: absolute;
                display: none;
                border: 1px solid #ccc;
                border-radius: 5px;
                box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
                background-color: white;
                z-index: 1000;
                max-width: 300px;
                padding: 10px;
                font-family: 'Verdana', sans-serif;
                color: #333;
            }
        </style>
        <script>
            function showPreview(event, previewContent) {
                var previewBox = document.getElementById('news-preview');
                previewBox.innerHTML = previewContent;
                previewBox.style.left = event.pageX + 'px';
                previewBox.style.top = event.pageY + 'px';
                previewBox.style.display = 'block';
            }
            function hidePreview() {
                var previewBox = document.getElementById('news-preview');
                previewBox.style.display = 'none';
            }
        </script>
        <div id="news-preview" class="news-preview"></div>
        """
        for index, result in enumerate(results[:7]):
            title = result.get("title", "No title")
            link = result.get("link", "#")
            snippet = result.get("snippet", "")
            news_html += f"""
            <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
                <a href='{link}' target='_blank'>{index + 1}. {title}</a>
                <p>{snippet}</p>
            </div>
            """
        return news_html
    else:
        return "<p>Failed to fetch local news</p>"

import numpy as np
import torch
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor

model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)

pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)

base_audio_drive = "/data/audio"

#Normal Code with sample rate is 44100 Hz

def transcribe_function(stream, new_chunk):
    try:
        sr, y = new_chunk[0], new_chunk[1]
    except TypeError:
        print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
        return stream, "", None

    y = y.astype(np.float32) / np.max(np.abs(y))

    if stream is not None:
        stream = np.concatenate([stream, y])
    else:
        stream = y

    result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)

    full_text = result.get("text","")
    
    return stream, full_text, result





def update_map_with_response(history):
    if not history:
        return ""
    response = history[-1][1]
    addresses = extract_addresses(response)
    return generate_map(addresses)

def clear_textbox():
    return "" 

def show_map_if_details(history, choice):
    if choice in ["Details", "Conversational"]:
        return gr.update(visible=True), update_map_with_response(history)
    else:
        return gr.update(visible(False), "")

def generate_audio_elevenlabs(text):
    XI_API_KEY = os.environ['ELEVENLABS_API']
    VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
    tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
    headers = {
        "Accept": "application/json",
        "xi-api-key": XI_API_KEY
    }
    data = {
        "text": str(text),
        "model_id": "eleven_multilingual_v2",
        "voice_settings": {
            "stability": 1.0,
            "similarity_boost": 0.0,
            "style": 0.60,
            "use_speaker_boost": False
        }
    }
    response = requests.post(tts_url, headers=headers, json=data, stream=True)
    if response.ok:
        audio_segments = []
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            for chunk in response.iter_content(chunk_size=1024):
                if chunk:
                    f.write(chunk)
                    audio_segments.append(chunk)
            temp_audio_path = f.name

        # Combine all audio chunks into a single file
        combined_audio = AudioSegment.from_file(temp_audio_path, format="mp3")
        combined_audio_path = os.path.join(tempfile.gettempdir(), "elevenlabs_combined_audio.mp3")
        combined_audio.export(combined_audio_path, format="mp3")

        logging.debug(f"Audio saved to {combined_audio_path}")
        return combined_audio_path
    else:
        logging.error(f"Error generating audio: {response.text}")
        return None


repo_id = "parler-tts/parler-tts-mini-expresso"

parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)

SAMPLE_RATE = parler_feature_extractor.sampling_rate
SEED = 42

def preprocess(text):
    number_normalizer = EnglishNumberNormalizer()
    text = number_normalizer(text).strip()
    if text[-1] not in punctuation:
        text = f"{text}."

    abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'

    def separate_abb(chunk):
        chunk = chunk.replace(".", "")
        return " ".join(chunk)

    abbreviations = re.findall(abbreviations_pattern, text)
    for abv in abbreviations:
        if abv in text:
            text is text.replace(abv, separate_abb(abv))
    return text

def chunk_text(text, max_length=250):
    words = text.split()
    chunks = []
    current_chunk = []
    current_length = 0

    for word in words:
        if current_length + len(word) + 1 <= max_length:
            current_chunk.append(word)
            current_length += len(word) + 1
        else:
            chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = len(word) + 1

    if current_chunk:
        chunks.append(' '.join(current_chunk))

    return chunks

def generate_audio_parler_tts(text):
    description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
    chunks = chunk_text(preprocess(text))
    audio_segments = []

    for chunk in chunks:
        inputs = parler_tokenizer(description, return_tensors="pt").to(device)
        prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)

        set_seed(SEED)
        generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
        audio_arr = generation.cpu().numpy().squeeze()

        temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
        write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
        audio_segments.append(AudioSegment.from_wav(temp_audio_path))

    combined_audio = sum(audio_segments)
    combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio.wav")
    combined_audio.export(combined_audio_path, format="wav")

    logging.debug(f"Audio saved to {combined_audio_path}")
    return combined_audio_path

# Load the MARS5 model
mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)

def generate_audio_mars5(text):
    description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
    kwargs_dict = {
        'temperature': 0.2,
        'top_k': -1,
        'top_p': 0.2,
        'typical_p': 1.0,
        'freq_penalty': 2.6,
        'presence_penalty': 0.4,
        'rep_penalty_window': 100,
        'max_prompt_phones': 360,
        'deep_clone': True,
        'nar_guidance_w': 3
    }

    chunks = chunk_text(preprocess(text))
    audio_segments = []

    for chunk in chunks:
        wav = torch.zeros(1, mars5.sr)  # Use a placeholder silent audio for the reference
        cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
        ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
        
        temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
        torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
        audio_segments.append(AudioSegment.from_wav(temp_audio_path))

    combined_audio = sum(audio_segments)
    combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
    combined_audio.export(combined_audio_path, format="wav")

    logging.debug(f"Audio saved to {combined_audio_path}")
    return combined_audio_path

pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
pipe.to(device)

def generate_image(prompt):
    with torch.cuda.amp.autocast():
        image = pipe(
            prompt,
            num_inference_steps=28,
            guidance_scale=3.0,
        ).images[0]
    return image

hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Toyota coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."

def update_images():
    image_1 = generate_image(hardcoded_prompt_1)
    image_2 = generate_image(hardcoded_prompt_2)
    image_3 = generate_image(hardcoded_prompt_3)
    return image_1, image_2, image_3




def fetch_local_events():
    api_key = os.environ['SERP_API']
    url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
    response = requests.get(url)
    if response.status_code == 200:
        events_results = response.json().get("events_results", [])
        events_html = """
        <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
        <style>
            table {
                font-family: 'Verdana', sans-serif;
                color: #333;
                border-collapse: collapse;
                width: 100%;
            }
            th, td {
                border: 1px solid #fff !important;
                padding: 8px;
            }
            th {
                background-color: #f2f2f2;
                color: #333;
                text-align: left;
            }
            tr:hover {
                background-color: #f5f5f5;
            }
            .event-link {
                color: #1E90FF;
                text-decoration: none;
            }
            .event-link:hover {
                text-decoration: underline;
            }
        </style>
        <table>
            <tr>
                <th>Title</th>
                <th>Date and Time</th>
                <th>Location</th>
            </tr>
        """
        for event in events_results:
            title = event.get("title", "No title")
            date_info = event.get("date", {})
            date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
            location = event.get("address", "No location")
            if isinstance(location, list):
                location = " ".join(location)
            location = location.replace("[", "").replace("]", "")
            link = event.get("link", "#")
            events_html += f"""
            <tr>
                <td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
                <td>{date}</td>
                <td>{location}</td>
            </tr>
            """
        events_html += "</table>"
        return events_html
    else:
        return "<p>Failed to fetch local events</p>"

def get_weather_icon(condition):
    condition_map = {
        "Clear": "c01d",
        "Partly Cloudy": "c02d",
        "Cloudy": "c03d",
        "Overcast": "c04d",
        "Mist": "a01d",
        "Patchy rain possible": "r01d",
        "Light rain": "r02d",
        "Moderate rain": "r03d",
        "Heavy rain": "r04d",
        "Snow": "s01d",
        "Thunderstorm": "t01d",
        "Fog": "a05d",
    }
    return condition_map.get(condition, "c04d")

def fetch_local_weather():
    try:
        api_key = os.environ['WEATHER_API']
        url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
        response = requests.get(url)
        response.raise_for_status()
        jsonData = response.json()
        
        current_conditions = jsonData.get("currentConditions", {})
        temp_celsius = current_conditions.get("temp", "N/A")
        
        if temp_celsius != "N/A":
            temp_fahrenheit = int((temp_celsius * 9/5) + 32)
        else:
            temp_fahrenheit = "N/A"
            
        condition = current_conditions.get("conditions", "N/A")
        humidity = current_conditions.get("humidity", "N/A")

        weather_html = f"""
        <div class="weather-theme">
            <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
            <div class="weather-content">
                <div class="weather-icon">
                    <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
                </div>
                <div class="weather-details">
                    <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
                    <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
                    <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
                </div>
            </div>
        </div>
        <style>
            .weather-theme {{
                animation: backgroundAnimation 10s infinite alternate;
                border-radius: 10px;
                padding: 10px;
                margin-bottom: 15px;
                background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
                background-size: 400% 400%;
                box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
                transition: box-shadow 0.3s ease, background-color 0.3s ease;
            }}
            .weather-theme:hover {{
                box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
                background-position: 100% 100%;
            }}
            @keyframes backgroundAnimation {{
                0% {{ background-position: 0% 50%; }}
                100% {{ background-position: 100% 50%; }}
            }}
            .weather-content {{
                display: flex;
                align-items: center;
            }}
            .weather-icon {{
                flex: 1;
            }}
            .weather-details {{
                flex 3;
            }}
        </style>
        """
        return weather_html
    except requests.exceptions.RequestException as e:
        return f"<p>Failed to fetch local weather: {e}</p>"


def handle_retrieval_mode_change(choice):
    if choice == "KGF":
        return gr.update(interactive=False), gr.update(interactive=False)
    else:
        return gr.update(interactive=True), gr.update(interactive=True)


def fetch_yelp_restaurants():
    from serpapi.google_search import GoogleSearch
    import os

    params = {
      "engine": "yelp",
      "find_desc": "Restaurant",
      "find_loc": "Birmingham, AL, USA",
      "api_key": os.getenv("SERP_API")
    }

    search = GoogleSearch(params)
    results = search.get_dict()
    organic_results = results.get("organic_results", [])

    yelp_html = """
    <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Top Restaurants</h2>
    <style>
        table {
            font-family: 'Verdana', sans-serif;
            color: #333;
            border-collapse: collapse;
            width: 100%;
        }
        th, td {
            border: 1px solid #fff !important;
            padding: 8px;
        }
        th {
            background-color: #f2f2f2;
            color: #333;
            text-align: left;
        }
        tr:hover {
            background-color: #f5f5f5;
        }
        .restaurant-link {
            color: #1E90FF;
            text-decoration: none;
        }
        .restaurant-link:hover {
            text-decoration: underline;
        }
    </style>
    <table>
        <tr>
            <th>Name</th>
            <th>Rating</th>
            <th>Reviews</th>
            <th>Phone</th>
            <th>Snippet</th>
            <th>Services</th>
        </tr>
    """
    for result in organic_results:
        name = result.get("title", "No name")
        rating = result.get("rating", "No rating")
        reviews = result.get("reviews", "No reviews")
        phone = result.get("phone", "Not Available")
        snippet = result.get("snippet", "No Available")
        services = result.get("service_options", "Not Known")

        if isinstance(services, list):
            services = ", ".join(services)
        elif isinstance(services, dict):
            services = ", ".join([f"{key}: {value}" for key, value in services.items()])

        link = result.get("link", "#")

        yelp_html += f"""
        <tr>
            <td><a class='restaurant-link' href='{link}' target='_blank'>{name}</a></td>
            <td>{rating}</td>
            <td>{reviews}</td>
            <td>{phone}</td>
            <td>{snippet}</td>
            <td>{services}</td>
        </tr>
        """
    yelp_html += "</table>"
    return yelp_html



with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
    with gr.Row():
        with gr.Column():
            state = gr.State()

            chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
            choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
            retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")

            gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")

            chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="After Prompt,click Retriever Only")
            tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
            retriever_button = gr.Button("Retriever")

            clear_button = gr.Button("Clear")
            clear_button.click(lambda:[None,None] ,outputs=[chat_input, state])

            gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
            location_output = gr.HTML()
            
            # Define a single audio component
            audio_output = gr.Audio(interactive=False, autoplay=True)

            def stop_audio():
                audio_output.stop()
                return None

            # Define the sequence of actions for the "Retriever" button
            retriever_sequence = (
                retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output],api_name="Ask_Retriever")
                .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input],api_name="voice_query")
                .then(fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output],api_name="generate_voice_response" )
                .then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder")
                .then(fn=clear_textbox, inputs=[], outputs=[chat_input])
            )

            # Link the "Enter" key (submit event) to the same sequence of actions
            chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output])
            chat_input.submit(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input],api_name="voice_query").then(
                fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output], api_name="generate_voice_response"
            ).then(
                fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder"
            ).then(
                fn=clear_textbox, inputs=[], outputs=[chat_input]
            )

            audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
            audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")

            # Handle retrieval mode change
            retrieval_mode.change(fn=handle_retrieval_mode_change, inputs=retrieval_mode, outputs=[choice, choice])

        with gr.Column():
            weather_output = gr.HTML(value=fetch_local_weather())
            news_output = gr.HTML(value=fetch_local_news())
            events_output = gr.HTML(value=fetch_local_events())
            restaurant_output=gr.HTML(value=fetch_yelp_restaurants())
        

        with gr.Column():
            image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
            image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
            image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)

            refresh_button = gr.Button("Refresh Images")
            refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3], api_name="update_image")
    

demo.queue()
demo.launch(share=True)