revert esm structure prediction
Browse files
app.py
CHANGED
@@ -242,21 +242,22 @@ def display_protein():
|
|
242 |
sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
|
243 |
|
244 |
if sequence:
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
#with torch.no_grad():
|
249 |
-
# output = model.infer_pdb(sequence)
|
250 |
-
|
251 |
-
#with open("result.pdb", "w") as f:
|
252 |
-
# f.write(output)
|
253 |
|
|
|
|
|
|
|
254 |
|
255 |
-
|
256 |
-
|
257 |
|
258 |
-
#st.write(output)
|
259 |
|
|
|
|
|
|
|
|
|
|
|
260 |
model, alphabet = esm.pretrained.esm2_t33_650M_UR50D()
|
261 |
batch_converter = alphabet.get_batch_converter()
|
262 |
batch_labels, batch_strs, batch_tokens = batch_converter([("protein1", sequence),])
|
@@ -311,6 +312,7 @@ def display_protein():
|
|
311 |
st.session_state['xq'] = st.session_state.model
|
312 |
|
313 |
# example proteins ["HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA"], ["AHKLFIGGLPNYLNDDQVKELLTSFGPLKAFNLVKDSATGLSKGYAFCEYVDINVTDQAIAGLNGMQLGDKKLLVQRASVGAKNA"]
|
|
|
314 |
|
315 |
def display_context():
|
316 |
st.markdown('## Display context')
|
|
|
242 |
sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
|
243 |
|
244 |
if sequence:
|
245 |
+
model = esm.pretrained.esmfold_v1()
|
246 |
+
model = model.eval().cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
+
with torch.no_grad():
|
249 |
+
output = model.infer_pdb(sequence)
|
250 |
+
st.write(output)
|
251 |
|
252 |
+
with open("result.pdb", "w") as f:
|
253 |
+
f.write(output)
|
254 |
|
|
|
255 |
|
256 |
+
struct = bsio.load_structure("result.pdb", extra_fields=["b_factor"])
|
257 |
+
print(struct.b_factor.mean())
|
258 |
+
|
259 |
+
|
260 |
+
"""
|
261 |
model, alphabet = esm.pretrained.esm2_t33_650M_UR50D()
|
262 |
batch_converter = alphabet.get_batch_converter()
|
263 |
batch_labels, batch_strs, batch_tokens = batch_converter([("protein1", sequence),])
|
|
|
312 |
st.session_state['xq'] = st.session_state.model
|
313 |
|
314 |
# example proteins ["HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA"], ["AHKLFIGGLPNYLNDDQVKELLTSFGPLKAFNLVKDSATGLSKGYAFCEYVDINVTDQAIAGLNGMQLGDKKLLVQRASVGAKNA"]
|
315 |
+
"""
|
316 |
|
317 |
def display_context():
|
318 |
st.markdown('## Display context')
|