change figure path
Browse files
app.py
CHANGED
|
@@ -45,7 +45,7 @@ def about_page():
|
|
| 45 |
"""
|
| 46 |
)
|
| 47 |
|
| 48 |
-
st.image('hyper-dti.png', caption='Overview of HyperPCM architecture.')
|
| 49 |
|
| 50 |
|
| 51 |
def predict_dti():
|
|
@@ -95,11 +95,11 @@ def predict_dti():
|
|
| 95 |
drug_embedding = [0,1,2,3,4,5]
|
| 96 |
else:
|
| 97 |
drug_embedding = None
|
| 98 |
-
st.image('molecule_encoder.png')
|
| 99 |
st.warning('Choose encoder above...')
|
| 100 |
|
| 101 |
if drug_embedding is not None:
|
| 102 |
-
st.image('molecule_encoder_done.png')
|
| 103 |
st.success('Encoding complete.')
|
| 104 |
|
| 105 |
with col2:
|
|
@@ -152,11 +152,11 @@ def predict_dti():
|
|
| 152 |
break
|
| 153 |
else:
|
| 154 |
prot_embedding = None
|
| 155 |
-
st.image('protein_encoder.png')
|
| 156 |
st.warning('Choose encoder above...')
|
| 157 |
|
| 158 |
if prot_embedding is not None:
|
| 159 |
-
st.image('protein_encoder_done.png')
|
| 160 |
st.success('Encoding complete.')
|
| 161 |
|
| 162 |
if drug_embedding is None or prot_embedding is None:
|
|
@@ -191,7 +191,7 @@ def retrieval():
|
|
| 191 |
|
| 192 |
with col3:
|
| 193 |
if sequence:
|
| 194 |
-
st.image('protein_encoder_done.png')
|
| 195 |
|
| 196 |
with st.spinner('Encoding in progress...'):
|
| 197 |
from bio_embeddings.embed import SeqVecEmbedder
|
|
@@ -268,8 +268,7 @@ def display_protein():
|
|
| 268 |
|
| 269 |
token_list = token_representations.tolist()[0][0][0]
|
| 270 |
|
| 271 |
-
client = Client(
|
| 272 |
-
url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
|
| 273 |
|
| 274 |
result = client.fetch("SELECT seq, distance('topK=500')(representations, " + str(token_list) + ')'+ "as dist FROM default.esm_protein_indexer_768")
|
| 275 |
|
|
|
|
| 45 |
"""
|
| 46 |
)
|
| 47 |
|
| 48 |
+
st.image('figures/hyper-dti.png', caption='Overview of HyperPCM architecture.')
|
| 49 |
|
| 50 |
|
| 51 |
def predict_dti():
|
|
|
|
| 95 |
drug_embedding = [0,1,2,3,4,5]
|
| 96 |
else:
|
| 97 |
drug_embedding = None
|
| 98 |
+
st.image('figures/molecule_encoder.png')
|
| 99 |
st.warning('Choose encoder above...')
|
| 100 |
|
| 101 |
if drug_embedding is not None:
|
| 102 |
+
st.image('figures/molecule_encoder_done.png')
|
| 103 |
st.success('Encoding complete.')
|
| 104 |
|
| 105 |
with col2:
|
|
|
|
| 152 |
break
|
| 153 |
else:
|
| 154 |
prot_embedding = None
|
| 155 |
+
st.image('figures/protein_encoder.png')
|
| 156 |
st.warning('Choose encoder above...')
|
| 157 |
|
| 158 |
if prot_embedding is not None:
|
| 159 |
+
st.image('figures/protein_encoder_done.png')
|
| 160 |
st.success('Encoding complete.')
|
| 161 |
|
| 162 |
if drug_embedding is None or prot_embedding is None:
|
|
|
|
| 191 |
|
| 192 |
with col3:
|
| 193 |
if sequence:
|
| 194 |
+
st.image('figures/protein_encoder_done.png')
|
| 195 |
|
| 196 |
with st.spinner('Encoding in progress...'):
|
| 197 |
from bio_embeddings.embed import SeqVecEmbedder
|
|
|
|
| 268 |
|
| 269 |
token_list = token_representations.tolist()[0][0][0]
|
| 270 |
|
| 271 |
+
client = Client(url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
|
|
|
|
| 272 |
|
| 273 |
result = client.fetch("SELECT seq, distance('topK=500')(representations, " + str(token_list) + ')'+ "as dist FROM default.esm_protein_indexer_768")
|
| 274 |
|