hyper-dti / app.py
emmas96's picture
check basic dependency in new version
e869110
raw
history blame
11.3 kB
import os
import sys
import numpy as np
import pandas as pd
import streamlit as st
from rdkit import Chem
from rdkit.Chem import Draw
sys.path.insert(0, os.path.abspath("src/"))
st.set_page_config(layout="wide")
basepath = os.path.dirname(__file__)
datapath = os.path.join(basepath, "data")
st.title('HyperDTI: Task-conditioned modeling of drug-target interactions.\n')
st.markdown('')
st.markdown(
"""
🧬 Github: [ml-jku/hyper-dti](https://https://github.com/ml-jku/hyper-dti) 📝 NeurIPS 2022 AI4Science workshop paper: [OpenReview](https://openreview.net/forum?id=dIX34JWnIAL)\n
"""
)
def about_page():
st.markdown(
"""
### About
HyperNetworks have been established as an effective technique to achieve fast adaptation of parameters for
neural networks. Recently, HyperNetwork predictions conditioned on descriptors of tasks have improved
multi-task generalization in various domains, such as personalized federated learning and neural architecture
search. Especially powerful results were achieved in few- and zero-shot settings, attributed to the increased
information sharing by the HyperNetwork. With the rise of new diseases fast discovery of drugs is needed which
requires models that are able to generalize drug-target interaction predictions in low-data scenarios.
In this work, we propose the HyperPCM model, a task-conditioned HyperNetwork approach for the problem of
predicting drug-target interactions in drug discovery. Our model learns to generate a QSAR model specialized on
a given protein target. We demonstrate state-of-the-art performance over previous methods on multiple
well-known benchmarks, particularly in zero-shot settings for unseen protein targets.
"""
#st.image('hyper-dti.png') todo
)
def display_dti():
st.markdown('##')
col1, col2 = st.columns(2)
with col1:
st.markdown('### Drug')
smiles = st.text_input('Enter the SMILES of the query drug compound', value='CC(=O)OC1=CC=CC=C1C(=O)O', placeholder='CC(=O)OC1=CC=CC=C1C(=O)O')
if smiles:
mol = Chem.MolFromSmiles(smiles)
mol_img = Chem.Draw.MolToImage(mol)
st.image(mol_img) #, width = 140)
selected_encoder = st.selectbox(
'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
)
if selected_encoder == 'CDDD':
from cddd.inference import InferenceModel
CDDD_MODEL_DIR = 'src/encoders/cddd'
cddd_model = InferenceModel(CDDD_MODEL_DIR)
embedding = cddd_model.seq_to_emb([smiles])
#from huggingface_hub import hf_hub_download
#precomputed_embs = f'{selected_encoder}_encoding.csv'
#REPO_ID = "emmas96/Lenselink"
#embs_path = hf_hub_download(REPO_ID, precomputed_embs)
#embs = pd.read_csv(embs_path)
#embedding = embs[smiles]
elif selected_encoder == 'MolBERT':
from molbert.utils.featurizer.molbert_featurizer import MolBertFeaturizer
from huggingface_hub import hf_hub_download
CDDD_MODEL_DIR = 'encoders/molbert/last.ckpt'
REPO_ID = "emmas96/hyperpcm"
checkpoint_path = hf_hub_download(REPO_ID, MOLBERT_MODEL_DIR)
molbert_model = MolBertFeaturizer(checkpoint_path, max_seq_len=500, embedding_type='average-1-cat-pooled')
embedding = molbert_model.transform([smiles])
else:
st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
embedding = None
if embedding is not None:
st.write(f'{selected_encoder} embedding')
st.write(embedding)
with col2:
st.markdown('### Target')
sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
if sequence:
st.markdown('\n\n\n\n Plot of protein to be added soon. \n\n\n\n')
selected_encoder = st.selectbox(
'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
)
if selected_encoder == 'SeqVec':
from bio_embeddings.embed import SeqVecEmbedder
encoder = SeqVecEmbedder()
embeddings = encoder.embed_batch([sequence])
for emb in embeddings:
embedding = encoder.reduce_per_protein(emb)
break
#from huggingface_hub import hf_hub_download
#precomputed_embs = f'{selected_encoder}_encoding.csv'
#REPO_ID = "emmas96/Lenselink"
#embs_path = hf_hub_download(REPO_ID, precomputed_embs)
#embs = pd.read_csv(embs_path)
#embedding = embs[sequence]
elif selected_encoder == 'UniRep':
from jax_unirep.utils import load_params
params = load_params()
from jax_unirep.featurize import get_reps
embedding, h_final, c_final = get_reps([sequence])
embedding = embedding.mean(axis=0)
elif selected_encoder == 'ESM-1b':
from bio_embeddings.embed import ESM1bEmbedder
encoder = ESM1bEmbedder()
embeddings = encoder.embed_batch([sequence])
for emb in embeddings:
embedding = encoder.reduce_per_protein(emb)
break
elif selected_encoder == 'ProtT5':
from bio_embeddings.embed import ProtTransT5XLU50Embedder
encoder = ProtTransT5XLU50Embedder()
embeddings = encoder.embed_batch([sequence])
for emb in embeddings:
embedding = encoder.reduce_per_protein(emb)
break
else:
st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
embedding = None
if embedding is not None:
st.write(f'{selected_encoder} embedding')
st.write(embedding)
def retrieval():
st.markdown('##')
st.markdown('### Target')
sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
if sequence:
st.markdown('\n\n\n\n Plot of protein to be added soon. \n\n\n\n')
selected_encoder = st.selectbox(
'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
)
st.markdown('### Retrieval of top-5 drug coupound from ChEMBL:')
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
smiles = 'CC(=O)OC1=CC=CC=C1C(=O)O'
mol = Chem.MolFromSmiles(smiles)
mol_img = Chem.Draw.MolToImage(mol)
st.image(mol_img)
with col2:
smiles = 'COc1cc(C=O)ccc1O'
mol = Chem.MolFromSmiles(smiles)
mol_img = Chem.Draw.MolToImage(mol)
st.image(mol_img)
with col3:
smiles = 'CC(=O)Nc1ccc(O)cc1'
mol = Chem.MolFromSmiles(smiles)
mol_img = Chem.Draw.MolToImage(mol)
st.image(mol_img)
with col4:
smiles = 'CC(=O)Nc1ccc(OS(=O)(=O)O)cc1'
mol = Chem.MolFromSmiles(smiles)
mol_img = Chem.Draw.MolToImage(mol)
st.image(mol_img)
with col5:
smiles = 'CC(=O)Nc1ccc(O[C@@H]2O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]2O)cc1'
mol = Chem.MolFromSmiles(smiles)
mol_img = Chem.Draw.MolToImage(mol)
st.image(mol_img)
def display_protein():
"""
sequence = st.text_input("Enter the amino-acid sequence of the query protein target", value="HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA", placeholder="HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA")
if sequence:
def esm_search(model, sequnce, batch_converter,top_k=5):
batch_labels, batch_strs, batch_tokens = batch_converter([("protein1", sequnce),])
# Extract per-residue representations (on CPU)
with torch.no_grad():
results = model(batch_tokens, repr_layers=[12], return_contacts=True)
token_representations = results["representations"][12]
token_list = token_representations.tolist()[0][0][0]
client = Client(
url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
result = client.fetch("SELECT seq, distance('topK=500')(representations, " + str(token_list) + ')'+ "as dist FROM default.esm_protein_indexer_768")
result_temp_seq = []
for i in result:
# result_temp_coords = i['seq']
result_temp_seq.append(i['seq'])
result_temp_seq = list(set(result_temp_seq))
result_temp_seq = esm_search(model, sequence, esm_search,top_k=5)
st.text('search result: ')
# tab1, tab2, tab3, tab4, = st.tabs(["Cat", "Dog", "Owl"])
if st.button(result_temp_seq[0]):
print(result_temp_seq[0])
elif st.button(result_temp_seq[1]):
print(result_temp_seq[1])
elif st.button(result_temp_seq[2]):
print(result_temp_seq[2])
elif st.button(result_temp_seq[3]):
print(result_temp_seq[3])
elif st.button(result_temp_seq[4]):
print(result_temp_seq[4])
start[2] = st.pyplot(visualize_3D_Coordinates(result_temp_coords).figure)
def show_protein_structure(sequence):
headers = {
'Content-Type': 'application/x-www-form-urlencoded',
}
response = requests.post('https://api.esmatlas.com/foldSequence/v1/pdb/', headers=headers, data=sequence)
name = sequence[:3] + sequence[-3:]
pdb_string = response.content.decode('utf-8')
with open('predicted.pdb', 'w') as f:
f.write(pdb_string)
struct = bsio.load_structure('predicted.pdb', extra_fields=["b_factor"])
b_value = round(struct.b_factor.mean(), 4)
render_mol(pdb_string)
if residues_marker:
start[3] = showmol(render_pdb_resn(viewer = render_pdb(id = id_PDB),resn_lst = [residues_marker]))
else:
start[3] = showmol(render_pdb(id = id_PDB))
st.session_state['xq'] = st.session_state.model
# example proteins ["HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA"], ["AHKLFIGGLPNYLNDDQVKELLTSFGPLKAFNLVKDSATGLSKGYAFCEYVDINVTDQAIAGLNGMQLGDKKLLVQRASVGAKNA"]
"""
page_names_to_func = {
'About': about_page,
#'Display DTI': display_dti,
#'Retrieve Top-k': retrieval
}
selected_page = st.sidebar.selectbox('Choose function', page_names_to_func.keys())
st.sidebar.markdown('')
page_names_to_func[selected_page]()