File size: 2,224 Bytes
89f9a8d
 
72f9629
 
89f9a8d
 
c0e52ad
 
 
89f9a8d
 
 
 
 
 
 
afba6b8
d5d696e
fc729c7
 
d5d696e
fc729c7
 
bc3d031
372f84d
bc3d031
 
afba6b8
501c3b1
afba6b8
bc3d031
 
 
 
 
 
 
 
 
 
 
 
 
fc729c7
 
bc3d031
 
 
 
 
5b730e0
 
 
bc3d031
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import sys
import numpy as np 
import pandas as pd
import streamlit as st

from rdkit import Chem
from rdkit.Chem import Draw

sys.path.insert(0, os.path.abspath("src/"))

st.set_page_config(layout="wide")

basepath = os.path.dirname(__file__)
datapath = os.path.join(basepath, "data")

st.title('HyperDTI: Task-conditioned modeling of drug-target interactions.\n')
st.markdown('')
st.markdown(
    """
    🧬 Github: [ml-jku/hyper-dti](https://https://github.com/ml-jku/hyper-dti)    📝 NeurIPS 2022 AI4Science workshop paper: [OpenReview](https://openreview.net/forum?id=dIX34JWnIAL)\n
    """
)


def about_page():
    st.markdown(
        """      
        ### About
        
        HyperNetworks have been established as an effective technique to achieve fast adaptation of parameters for 
        neural networks. Recently, HyperNetwork predictions conditioned on descriptors of tasks have improved 
        multi-task generalization in various domains, such as personalized federated learning and neural architecture 
        search. Especially powerful results were achieved in few- and zero-shot settings, attributed to the increased 
        information sharing by the HyperNetwork. With the rise of new diseases fast discovery of drugs is needed which 
        requires models that are able to generalize drug-target interaction predictions in low-data scenarios. 
        
        In this work, we propose the HyperPCM model, a task-conditioned HyperNetwork approach for the problem of 
        predicting drug-target interactions in drug discovery. Our model learns to generate a QSAR model specialized on
        a given protein target. We demonstrate state-of-the-art performance over previous methods on multiple 
        well-known benchmarks, particularly in zero-shot settings for unseen protein targets.
        """
    )
    
# example proteins ["HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA"], ["AHKLFIGGLPNYLNDDQVKELLTSFGPLKAFNLVKDSATGLSKGYAFCEYVDINVTDQAIAGLNGMQLGDKKLLVQRASVGAKNA"]

page_names_to_func = {
    'About': about_page
}

selected_page = st.sidebar.selectbox('Choose function', page_names_to_func.keys())
st.sidebar.markdown('')
page_names_to_func[selected_page]()