File size: 4,738 Bytes
29a7123 1610722 badff1c 828d42b 1610722 badff1c 828d42b badff1c 1610722 29a7123 1610722 29a7123 1610722 29a7123 1610722 29a7123 1610722 29a7123 828d42b 1610722 05020c4 badff1c 828d42b 1610722 badff1c 05020c4 1610722 05020c4 1610722 badff1c 1610722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import gradio as gr
import torch
from datasets import load_dataset
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
import soundfile as sf
import spaces
import os
from speechbrain.pretrained import EncoderClassifier
import re
device = "cuda" if torch.cuda.is_available() else "cpu"
def load_models_and_data():
model_name = "microsoft/speecht5_tts"
processor = SpeechT5Processor.from_pretrained(model_name)
model = SpeechT5ForTextToSpeech.from_pretrained("emirhanbilgic/speecht5_finetuned_emirhan_tr").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
speaker_model = EncoderClassifier.from_hparams(
source=spk_model_name,
run_opts={"device": device},
savedir=os.path.join("/tmp", spk_model_name),
)
return model, processor, vocoder, speaker_model
model, processor, vocoder, speaker_model = load_models_and_data()
def create_speaker_embedding(waveform):
with torch.no_grad():
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0).to(device))
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
speaker_embeddings = speaker_embeddings.squeeze()
return speaker_embeddings
replacements = [
("â", "a"), ("ç", "ch"), ("ğ", "gh"), ("ı", "i"), ("î", "i"),
("ö", "oe"), ("ş", "sh"), ("ü", "ue"), ("û", "u"),
]
number_words = {
0: "sıfır", 1: "bir", 2: "iki", 3: "üç", 4: "dört", 5: "beş", 6: "altı", 7: "yedi", 8: "sekiz", 9: "dokuz",
10: "on", 11: "on bir", 12: "on iki", 13: "on üç", 14: "on dört", 15: "on beş", 16: "on altı", 17: "on yedi",
18: "on sekiz", 19: "on dokuz", 20: "yirmi", 30: "otuz", 40: "kırk", 50: "elli", 60: "altmış", 70: "yetmiş",
80: "seksen", 90: "doksan", 100: "yüz", 1000: "bin"
}
def number_to_words(number):
if number < 20:
return number_words[number]
elif number < 100:
tens, unit = divmod(number, 10)
return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
elif number < 1000:
hundreds, remainder = divmod(number, 100)
return (number_words[hundreds] + " yüz" if hundreds > 1 else "yüz") + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000:
thousands, remainder = divmod(number, 1000)
return (number_to_words(thousands) + " bin" if thousands > 1 else "bin") + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000000:
millions, remainder = divmod(number, 1000000)
return number_to_words(millions) + " milyon" + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000000000:
billions, remainder = divmod(number, 1000000000)
return number_to_words(billions) + " milyar" + (" " + number_to_words(remainder) if remainder else "")
else:
return str(number)
def replace_numbers_with_words(text):
def replace(match):
number = int(match.group())
return number_to_words(number)
return re.sub(r'\b\d+\b', replace, text)
def normalize_text(text):
text = text.lower()
text = replace_numbers_with_words(text)
for old, new in replacements:
text = text.replace(old, new)
return text
@spaces.GPU(duration = 60)
def text_to_speech(text, audio_file):
normalized_text = normalize_text(text)
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
waveform, sample_rate = sf.read(audio_file)
if len(waveform.shape) > 1:
waveform = waveform[:, 0] # Take the first channel if stereo
if sample_rate != 16000:
print("Warning: The model expects 16kHz sampling rate")
speaker_embeddings = create_speaker_embedding(waveform)
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
sf.write("output.wav", speech.cpu().numpy(), samplerate=16000)
return "output.wav", normalized_text
iface = gr.Interface(
fn=text_to_speech,
inputs=[
gr.Textbox(label="Enter Turkish text to convert to speech"),
gr.Audio(label="Upload a short audio file of the target speaker", type="filepath")
],
outputs=[
gr.Audio(label="Generated Speech"),
gr.Textbox(label="Normalized Text")
],
title="Turkish SpeechT5 Text-to-Speech Demo with Custom Speaker",
description="Enter Turkish text, upload a short audio file of the target speaker, and listen to the generated speech using the fine-tuned SpeechT5 model. The text will be normalized for better pronunciation."
)
iface.launch() |