Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
import torch
|
|
|
|
| 4 |
from datasets import load_dataset
|
| 5 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 6 |
import soundfile as sf
|
|
@@ -9,6 +10,62 @@ import spaces
|
|
| 9 |
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
def load_models_and_data():
|
| 13 |
model_name = "microsoft/speecht5_tts"
|
| 14 |
processor = SpeechT5Processor.from_pretrained(model_name)
|
|
@@ -34,10 +91,11 @@ def create_speaker_embedding(waveform):
|
|
| 34 |
|
| 35 |
@spaces.GPU(duration = 60)
|
| 36 |
def text_to_speech(text, waveform):
|
|
|
|
| 37 |
speaker_embeddings = create_speaker_embedding(waveform)
|
| 38 |
speaker_embeddings = torch.tensor(speaker_embeddings).unsqueeze(0).to(device)
|
| 39 |
|
| 40 |
-
inputs = processor(text=
|
| 41 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
| 42 |
sf.write("output.wav", speech.cpu().numpy(), samplerate=16000)
|
| 43 |
return "output.wav"
|
|
@@ -46,11 +104,11 @@ iface = gr.Interface(
|
|
| 46 |
fn=text_to_speech,
|
| 47 |
inputs=[
|
| 48 |
gr.Textbox(label="Enter Turkish text to convert to speech"),
|
| 49 |
-
gr.Audio(
|
| 50 |
],
|
| 51 |
outputs=gr.Audio(label="Generated Speech"),
|
| 52 |
title="Turkish SpeechT5 Text-to-Speech Demo with Custom Speaker Embeddings",
|
| 53 |
-
description="Enter Turkish text and upload an audio file to generate speech using the fine-tuned SpeechT5 model with custom speaker embeddings."
|
| 54 |
)
|
| 55 |
|
| 56 |
iface.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
+
import re
|
| 3 |
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
from datasets import load_dataset
|
| 6 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 7 |
import soundfile as sf
|
|
|
|
| 10 |
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
|
| 13 |
+
replacements = [
|
| 14 |
+
("â", "a"),
|
| 15 |
+
("ç", "ch"),
|
| 16 |
+
("ğ", "gh"),
|
| 17 |
+
("ı", "i"),
|
| 18 |
+
("î", "i"),
|
| 19 |
+
("ö", "oe"),
|
| 20 |
+
("ş", "sh"),
|
| 21 |
+
("ü", "ue"),
|
| 22 |
+
("û", "u"),
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
number_words = {
|
| 26 |
+
0: "sıfır", 1: "bir", 2: "iki", 3: "üç", 4: "dört", 5: "beş", 6: "altı", 7: "yedi", 8: "sekiz", 9: "dokuz",
|
| 27 |
+
10: "on", 11: "on bir", 12: "on iki", 13: "on üç", 14: "on dört", 15: "on beş", 16: "on altı", 17: "on yedi",
|
| 28 |
+
18: "on sekiz", 19: "on dokuz", 20: "yirmi", 30: "otuz", 40: "kırk", 50: "elli", 60: "altmış", 70: "yetmiş",
|
| 29 |
+
80: "seksen", 90: "doksan", 100: "yüz", 1000: "bin"
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
def number_to_words(number):
|
| 33 |
+
if number < 20:
|
| 34 |
+
return number_words[number]
|
| 35 |
+
elif number < 100:
|
| 36 |
+
tens, unit = divmod(number, 10)
|
| 37 |
+
return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
|
| 38 |
+
elif number < 1000:
|
| 39 |
+
hundreds, remainder = divmod(number, 100)
|
| 40 |
+
return (number_words[hundreds] + " yüz" if hundreds > 1 else "yüz") + (" " + number_to_words(remainder) if remainder else "")
|
| 41 |
+
elif number < 1000000:
|
| 42 |
+
thousands, remainder = divmod(number, 1000)
|
| 43 |
+
return (number_to_words(thousands) + " bin" if thousands > 1 else "bin") + (" " + number_to_words(remainder) if remainder else "")
|
| 44 |
+
elif number < 1000000000:
|
| 45 |
+
millions, remainder = divmod(number, 1000000)
|
| 46 |
+
return number_to_words(millions) + " milyon" + (" " + number_to_words(remainder) if remainder else "")
|
| 47 |
+
elif number < 1000000000000:
|
| 48 |
+
billions, remainder = divmod(number, 1000000000)
|
| 49 |
+
return number_to_words(billions) + " milyar" + (" " + number_to_words(remainder) if remainder else "")
|
| 50 |
+
else:
|
| 51 |
+
return str(number)
|
| 52 |
+
|
| 53 |
+
def replace_numbers_with_words(text):
|
| 54 |
+
def replace(match):
|
| 55 |
+
number = int(match.group())
|
| 56 |
+
return number_to_words(number)
|
| 57 |
+
return re.sub(r'\b\d+\b', replace, text)
|
| 58 |
+
|
| 59 |
+
def cleanup_text(text):
|
| 60 |
+
for old, new in replacements:
|
| 61 |
+
text = text.replace(old, new)
|
| 62 |
+
return text
|
| 63 |
+
|
| 64 |
+
def normalize_text(text):
|
| 65 |
+
text = replace_numbers_with_words(text)
|
| 66 |
+
text = cleanup_text(text)
|
| 67 |
+
return text
|
| 68 |
+
|
| 69 |
def load_models_and_data():
|
| 70 |
model_name = "microsoft/speecht5_tts"
|
| 71 |
processor = SpeechT5Processor.from_pretrained(model_name)
|
|
|
|
| 91 |
|
| 92 |
@spaces.GPU(duration = 60)
|
| 93 |
def text_to_speech(text, waveform):
|
| 94 |
+
final_text = normalize_text(text)
|
| 95 |
speaker_embeddings = create_speaker_embedding(waveform)
|
| 96 |
speaker_embeddings = torch.tensor(speaker_embeddings).unsqueeze(0).to(device)
|
| 97 |
|
| 98 |
+
inputs = processor(text=final_text, return_tensors="pt").to(device)
|
| 99 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
| 100 |
sf.write("output.wav", speech.cpu().numpy(), samplerate=16000)
|
| 101 |
return "output.wav"
|
|
|
|
| 104 |
fn=text_to_speech,
|
| 105 |
inputs=[
|
| 106 |
gr.Textbox(label="Enter Turkish text to convert to speech"),
|
| 107 |
+
gr.Audio(type="numpy", label="Upload Speaker Audio"), # Updated this line
|
| 108 |
],
|
| 109 |
outputs=gr.Audio(label="Generated Speech"),
|
| 110 |
title="Turkish SpeechT5 Text-to-Speech Demo with Custom Speaker Embeddings",
|
| 111 |
+
description="Enter Turkish text and upload an audio file to generate speech using the fine-tuned SpeechT5 model with custom speaker embeddings. The text is normalized with custom replacements and number-to-word conversions."
|
| 112 |
)
|
| 113 |
|
| 114 |
iface.launch()
|