catGen / app.py
elapt1c's picture
Create app.py
254b385 verified
raw
history blame
7.57 kB
import os
import io
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms
from PIL import Image, ImageTk, ImageFilter
import numpy as np
import gradio as gr
from huggingface_hub import hf_hub_download
# --- Hyperparameters ---
image_size = 64
latent_dim = 128
model_repo_id = "elapt1c/catGen"
model_filename = "model.pth"
#model_path = 'model.pth' # Relative path within the space. Assumed it will be in the root
generated_images_folder = 'generated_images'
# --- VAE Model --- (Simplified VAE - MATCHING TRAINING CODE)
class VAE(nn.Module):
def __init__(self, latent_dim):
super(VAE, self).__init__()
# Encoder - MATCHING TRAINING CODE ARCHITECTURE
self.encoder_conv = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=4, stride=2, padding=1), # Increased initial channels
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), # Increased final channels
nn.LeakyReLU(0.2, inplace=True),
)
self.encoder_fc_mu = nn.Linear(512 * 2 * 2, latent_dim)
self.encoder_fc_logvar = nn.Linear(512 * 2 * 2, latent_dim)
# Decoder - MATCHING TRAINING CODE ARCHITECTURE
self.decoder_fc = nn.Linear(latent_dim, 512 * 2 * 2)
self.decoder_conv = nn.Sequential(
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.ConvTranspose2d(32, 3, kernel_size=4, stride=2, padding=1),
nn.Sigmoid()
)
def encode(self, x):
h = self.encoder_conv(x)
h = h.view(h.size(0), -1)
mu = self.encoder_fc_mu(h)
logvar = self.encoder_fc_logvar(h)
return mu, logvar
def decode(self, z):
z = self.decoder_fc(z)
z = z.view(z.size(0), 512, 2, 2) # Corrected view shape to 512 channels
reconstructed_image = self.decoder_conv(z)
return reconstructed_image
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
reconstructed_image = self.decode(z)
return reconstructed_image, mu, logvar
# --- Helper Functions ---
def load_model(device, repo_id, filename):
try:
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
except Exception as e:
print(f"Error downloading model from Hugging Face Hub: {e}")
return None
vae_model = VAE(latent_dim=latent_dim).to(device) # Plain VAE model
try:
checkpoint = torch.load(model_path, map_location=device) # Load checkpoint dict
except FileNotFoundError:
print(f"Error: Model file not found at {model_path}. This should not happen after downloading.")
return None
new_state_dict = {} # Create a new dictionary for modified keys
for key, value in checkpoint.items():
new_key = key.replace('_orig_mod.', '') # Remove "_orig_mod." prefix
new_state_dict[new_key] = value # Add to new dict with modified key
vae_model.load_state_dict(new_state_dict) # Load state_dict with modified keys
print(f"====> Loaded existing model from {model_path} (handling Torch Compile state_dict)")
return vae_model
def preprocess_image(image):
try:
transform = transforms.Compose([
transforms.Resize((image_size, image_size)),
transforms.ToTensor(),
])
image = transform(image).unsqueeze(0)
return image
except Exception as e:
print(f"Failed to preprocess image: {e}")
return None
def generate_single_image(model, device):
try:
model.eval()
with torch.no_grad():
sample_z = torch.randn(1, latent_dim).to(device)
generated_image = model.decode(sample_z) # Use simple VAE decode
img = generated_image.cpu().detach().numpy()
output = (img[0] * 255).transpose(1, 2, 0).astype(np.uint8)
image = Image.fromarray(output) # save from random image
return image # use the image
except Exception as e:
print(f"Image generation failed: {e}")
return None
def generate_from_base_image(model, device, base_image, noise_scale=0.1):
try:
model.eval()
with torch.no_grad():
processed_image = preprocess_image(base_image) # Process base image
if processed_image is None:
return None
processed_image = processed_image.to(device) # to device
mu, logvar = model.encode(processed_image) # encode
latent_vector = model.reparameterize(mu, logvar) # reparameterize
noise = torch.randn_like(latent_vector) * noise_scale # add noise
latent_vector = latent_vector + noise # combine
generated_image = model.decode(latent_vector) # Use simple VAE decode
img = generated_image.cpu().detach().numpy()
output = (img[0] * 255).transpose(1, 2, 0).astype(np.uint8)
output_image = Image.fromarray(output) # save from
return output_image
except Exception as e:
print(f"Seed image generation failed: {e}")
return None
# --- Gradio Interface ---
def main():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae_model = load_model(device, model_repo_id, model_filename)
if vae_model is None:
return # Exit if model loading fails
def generate_single():
img = generate_single_image(vae_model, device)
if img:
return img
else:
return "Image generation failed. Check console for errors."
def generate_from_seed(seed_image):
if seed_image is None:
return "Please upload a seed image."
img = generate_from_base_image(vae_model, device, seed_image)
if img:
return img
else:
return "Image generation from seed failed. Check console for errors."
with gr.Blocks() as demo:
gr.Markdown("# VAE Image Generator")
with gr.Tab("Generate Single Image"):
single_button = gr.Button("Generate Random Image")
single_output = gr.Image()
single_button.click(generate_single, inputs=[], outputs=single_output)
with gr.Tab("Generate from Seed"):
seed_input = gr.Image(label="Seed Image")
seed_button = gr.Button("Generate from Seed")
seed_output = gr.Image()
seed_button.click(generate_from_seed, inputs=seed_input, outputs=seed_output)
demo.launch()
if __name__ == "__main__":
main()