Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch.optim as optim
|
7 |
+
from torchvision import transforms
|
8 |
+
from PIL import Image, ImageTk, ImageFilter
|
9 |
+
import numpy as np
|
10 |
+
import gradio as gr
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
|
13 |
+
|
14 |
+
# --- Hyperparameters ---
|
15 |
+
image_size = 64
|
16 |
+
latent_dim = 128
|
17 |
+
model_repo_id = "elapt1c/catGen"
|
18 |
+
model_filename = "model.pth"
|
19 |
+
#model_path = 'model.pth' # Relative path within the space. Assumed it will be in the root
|
20 |
+
generated_images_folder = 'generated_images'
|
21 |
+
|
22 |
+
|
23 |
+
# --- VAE Model --- (Simplified VAE - MATCHING TRAINING CODE)
|
24 |
+
class VAE(nn.Module):
|
25 |
+
def __init__(self, latent_dim):
|
26 |
+
super(VAE, self).__init__()
|
27 |
+
|
28 |
+
# Encoder - MATCHING TRAINING CODE ARCHITECTURE
|
29 |
+
self.encoder_conv = nn.Sequential(
|
30 |
+
nn.Conv2d(3, 32, kernel_size=4, stride=2, padding=1), # Increased initial channels
|
31 |
+
nn.LeakyReLU(0.2, inplace=True),
|
32 |
+
nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1),
|
33 |
+
nn.LeakyReLU(0.2, inplace=True),
|
34 |
+
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
|
35 |
+
nn.LeakyReLU(0.2, inplace=True),
|
36 |
+
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
|
37 |
+
nn.LeakyReLU(0.2, inplace=True),
|
38 |
+
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), # Increased final channels
|
39 |
+
nn.LeakyReLU(0.2, inplace=True),
|
40 |
+
)
|
41 |
+
self.encoder_fc_mu = nn.Linear(512 * 2 * 2, latent_dim)
|
42 |
+
self.encoder_fc_logvar = nn.Linear(512 * 2 * 2, latent_dim)
|
43 |
+
|
44 |
+
# Decoder - MATCHING TRAINING CODE ARCHITECTURE
|
45 |
+
self.decoder_fc = nn.Linear(latent_dim, 512 * 2 * 2)
|
46 |
+
self.decoder_conv = nn.Sequential(
|
47 |
+
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
|
48 |
+
nn.LeakyReLU(0.2, inplace=True),
|
49 |
+
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
|
50 |
+
nn.LeakyReLU(0.2, inplace=True),
|
51 |
+
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
|
52 |
+
nn.LeakyReLU(0.2, inplace=True),
|
53 |
+
nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1),
|
54 |
+
nn.LeakyReLU(0.2, inplace=True),
|
55 |
+
nn.ConvTranspose2d(32, 3, kernel_size=4, stride=2, padding=1),
|
56 |
+
nn.Sigmoid()
|
57 |
+
)
|
58 |
+
|
59 |
+
def encode(self, x):
|
60 |
+
h = self.encoder_conv(x)
|
61 |
+
h = h.view(h.size(0), -1)
|
62 |
+
mu = self.encoder_fc_mu(h)
|
63 |
+
logvar = self.encoder_fc_logvar(h)
|
64 |
+
return mu, logvar
|
65 |
+
|
66 |
+
def decode(self, z):
|
67 |
+
z = self.decoder_fc(z)
|
68 |
+
z = z.view(z.size(0), 512, 2, 2) # Corrected view shape to 512 channels
|
69 |
+
reconstructed_image = self.decoder_conv(z)
|
70 |
+
return reconstructed_image
|
71 |
+
|
72 |
+
def reparameterize(self, mu, logvar):
|
73 |
+
std = torch.exp(0.5 * logvar)
|
74 |
+
eps = torch.randn_like(std)
|
75 |
+
return mu + eps * std
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
mu, logvar = self.encode(x)
|
79 |
+
z = self.reparameterize(mu, logvar)
|
80 |
+
reconstructed_image = self.decode(z)
|
81 |
+
return reconstructed_image, mu, logvar
|
82 |
+
|
83 |
+
|
84 |
+
# --- Helper Functions ---
|
85 |
+
def load_model(device, repo_id, filename):
|
86 |
+
try:
|
87 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Error downloading model from Hugging Face Hub: {e}")
|
90 |
+
return None
|
91 |
+
|
92 |
+
vae_model = VAE(latent_dim=latent_dim).to(device) # Plain VAE model
|
93 |
+
|
94 |
+
try:
|
95 |
+
checkpoint = torch.load(model_path, map_location=device) # Load checkpoint dict
|
96 |
+
except FileNotFoundError:
|
97 |
+
print(f"Error: Model file not found at {model_path}. This should not happen after downloading.")
|
98 |
+
return None
|
99 |
+
|
100 |
+
new_state_dict = {} # Create a new dictionary for modified keys
|
101 |
+
for key, value in checkpoint.items():
|
102 |
+
new_key = key.replace('_orig_mod.', '') # Remove "_orig_mod." prefix
|
103 |
+
new_state_dict[new_key] = value # Add to new dict with modified key
|
104 |
+
|
105 |
+
vae_model.load_state_dict(new_state_dict) # Load state_dict with modified keys
|
106 |
+
print(f"====> Loaded existing model from {model_path} (handling Torch Compile state_dict)")
|
107 |
+
return vae_model
|
108 |
+
|
109 |
+
|
110 |
+
def preprocess_image(image):
|
111 |
+
try:
|
112 |
+
transform = transforms.Compose([
|
113 |
+
transforms.Resize((image_size, image_size)),
|
114 |
+
transforms.ToTensor(),
|
115 |
+
])
|
116 |
+
image = transform(image).unsqueeze(0)
|
117 |
+
return image
|
118 |
+
except Exception as e:
|
119 |
+
print(f"Failed to preprocess image: {e}")
|
120 |
+
return None
|
121 |
+
|
122 |
+
|
123 |
+
def generate_single_image(model, device):
|
124 |
+
try:
|
125 |
+
model.eval()
|
126 |
+
with torch.no_grad():
|
127 |
+
sample_z = torch.randn(1, latent_dim).to(device)
|
128 |
+
generated_image = model.decode(sample_z) # Use simple VAE decode
|
129 |
+
img = generated_image.cpu().detach().numpy()
|
130 |
+
output = (img[0] * 255).transpose(1, 2, 0).astype(np.uint8)
|
131 |
+
image = Image.fromarray(output) # save from random image
|
132 |
+
return image # use the image
|
133 |
+
except Exception as e:
|
134 |
+
print(f"Image generation failed: {e}")
|
135 |
+
return None
|
136 |
+
|
137 |
+
|
138 |
+
def generate_from_base_image(model, device, base_image, noise_scale=0.1):
|
139 |
+
try:
|
140 |
+
model.eval()
|
141 |
+
with torch.no_grad():
|
142 |
+
processed_image = preprocess_image(base_image) # Process base image
|
143 |
+
if processed_image is None:
|
144 |
+
return None
|
145 |
+
|
146 |
+
processed_image = processed_image.to(device) # to device
|
147 |
+
mu, logvar = model.encode(processed_image) # encode
|
148 |
+
latent_vector = model.reparameterize(mu, logvar) # reparameterize
|
149 |
+
|
150 |
+
noise = torch.randn_like(latent_vector) * noise_scale # add noise
|
151 |
+
latent_vector = latent_vector + noise # combine
|
152 |
+
|
153 |
+
generated_image = model.decode(latent_vector) # Use simple VAE decode
|
154 |
+
img = generated_image.cpu().detach().numpy()
|
155 |
+
output = (img[0] * 255).transpose(1, 2, 0).astype(np.uint8)
|
156 |
+
output_image = Image.fromarray(output) # save from
|
157 |
+
return output_image
|
158 |
+
|
159 |
+
except Exception as e:
|
160 |
+
print(f"Seed image generation failed: {e}")
|
161 |
+
return None
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
# --- Gradio Interface ---
|
166 |
+
def main():
|
167 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
168 |
+
vae_model = load_model(device, model_repo_id, model_filename)
|
169 |
+
if vae_model is None:
|
170 |
+
return # Exit if model loading fails
|
171 |
+
|
172 |
+
def generate_single():
|
173 |
+
img = generate_single_image(vae_model, device)
|
174 |
+
if img:
|
175 |
+
return img
|
176 |
+
else:
|
177 |
+
return "Image generation failed. Check console for errors."
|
178 |
+
|
179 |
+
def generate_from_seed(seed_image):
|
180 |
+
if seed_image is None:
|
181 |
+
return "Please upload a seed image."
|
182 |
+
|
183 |
+
img = generate_from_base_image(vae_model, device, seed_image)
|
184 |
+
if img:
|
185 |
+
return img
|
186 |
+
else:
|
187 |
+
return "Image generation from seed failed. Check console for errors."
|
188 |
+
|
189 |
+
|
190 |
+
with gr.Blocks() as demo:
|
191 |
+
gr.Markdown("# VAE Image Generator")
|
192 |
+
|
193 |
+
with gr.Tab("Generate Single Image"):
|
194 |
+
single_button = gr.Button("Generate Random Image")
|
195 |
+
single_output = gr.Image()
|
196 |
+
single_button.click(generate_single, inputs=[], outputs=single_output)
|
197 |
+
|
198 |
+
with gr.Tab("Generate from Seed"):
|
199 |
+
seed_input = gr.Image(label="Seed Image")
|
200 |
+
seed_button = gr.Button("Generate from Seed")
|
201 |
+
seed_output = gr.Image()
|
202 |
+
seed_button.click(generate_from_seed, inputs=seed_input, outputs=seed_output)
|
203 |
+
|
204 |
+
|
205 |
+
demo.launch()
|
206 |
+
|
207 |
+
|
208 |
+
if __name__ == "__main__":
|
209 |
+
main()
|