mask-detection / src /train.py
eksemyashkina's picture
Upload 13 files
f514e23 verified
raw
history blame
20.7 kB
import math
from pathlib import Path
from typing import List, Tuple, Dict
from tqdm import tqdm
import argparse
from accelerate import Accelerator
from accelerate.utils import set_seed
import wandb
import torch
from torch import nn
from torch.utils.data import DataLoader
import torchvision.ops as ops
import PIL
import numpy as np
from dataset import MaskDataset, collate_fn, ANCHORS
from utils import EMA
from models.yolov3 import YOLOv3
from loss import YoloLoss
class WarmupCosineAnnealingLR(torch.optim.lr_scheduler._LRScheduler):
def __init__(self, optimizer: torch.optim.Optimizer, warmup_steps: int, total_steps: int, eta_min: int = 0, last_epoch: int = -1) -> None:
self.warmup_steps = warmup_steps
self.total_steps = total_steps
self.eta_min = eta_min
super().__init__(optimizer, last_epoch)
def get_lr(self) -> List[float]:
if self.last_epoch < self.warmup_steps:
return [base_lr * (self.last_epoch / max(1, self.warmup_steps)) for base_lr in self.base_lrs]
else:
current_step = self.last_epoch - self.warmup_steps
cosine_steps = max(1, self.total_steps - self.warmup_steps)
return [self.eta_min + (base_lr - self.eta_min) * 0.5 * (1 + math.cos(math.pi * current_step / cosine_steps)) for base_lr in self.base_lrs]
def draw_bounding_boxes(image: PIL.Image.Image, boxes: torch.Tensor, colors: Dict[int, int] = {0: (178, 34, 34), 1: (34, 139, 34), 2: (184, 134, 11)}, labels = {0: "without_mask", 1: "with_mask", 2: "weared_incorrect"}, show_conf = False) -> None:
draw = PIL.ImageDraw.Draw(image)
for box in boxes:
xmin, ymin, xmax, ymax, class_id = int(box[0]), int(box[1]), int(box[2]), int(box[3]), int(box[-1])
conf_text = ""
if show_conf and box.shape[0] == 6:
conf = float(box[4])
conf_text = f" {conf:.2f}"
color = colors.get(class_id, (255, 255, 255))
label = labels.get(class_id, "Unknown") + conf_text
draw.rectangle([xmin, ymin, xmax, ymax], outline=color, width=2)
text_bbox = draw.textbbox((xmin, ymin), label)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
draw.rectangle([xmin, ymin - text_height - 2, xmin + text_width + 2, ymin], fill=color)
draw.text((xmin + 1, ymin - text_height - 1), label, fill="white")
def create_combined_image(img: torch.Tensor, gt_batch: List[torch.Tensor], results: List[torch.Tensor], mean: List[float] = [0.485, 0.456, 0.406], std: List[float] = [0.229, 0.224, 0.225]):
batch_size, _, height, width = img.shape
combined_height = height * 2
combined_width = width * batch_size
combined_image = np.zeros((combined_height, combined_width, 3), dtype=np.uint8)
for i in range(batch_size):
image = img[i].cpu().permute(1, 2, 0).numpy()
image = (image * std + mean).clip(0, 1)
image = (image * 255).astype(np.uint8)
gt_image = PIL.Image.fromarray(image.copy())
pred_image = PIL.Image.fromarray(image.copy())
draw_bounding_boxes(gt_image, gt_batch[i])
draw_bounding_boxes(pred_image, results[i], show_conf=True)
combined_image[:height, i * width:(i + 1) * width, :] = np.array(gt_image)
combined_image[height:, i * width:(i + 1) * width, :] = np.array(pred_image)
return PIL.Image.fromarray(combined_image)
def decode_yolo_output_single(prediction: torch.Tensor, anchors: List[Tuple[int]], image_size: Tuple[int] = (416, 416), conf_threshold: float = 0.5, iou_threshold: float = 0.3, apply_nms: bool = True, num_classes: int = 3) -> List[torch.Tensor]:
device = prediction.device
B, _, H, W = prediction.shape
A = len(anchors)
prediction = prediction.view(B, A, 5 + num_classes, H, W)
prediction = prediction.permute(0, 1, 3, 4, 2).contiguous()
tx = prediction[..., 0]
ty = prediction[..., 1]
tw = prediction[..., 2]
th = prediction[..., 3]
obj = prediction[..., 4]
class_scores = prediction[..., 5:]
tx = tx.sigmoid()
ty = ty.sigmoid()
obj = obj.sigmoid()
class_scores = class_scores.softmax(dim=-1)
img_w, img_h = image_size
cell_w = img_w / W
cell_h = img_h / H
grid_x = torch.arange(W, device=device).view(1, 1, W).expand(1, H, W)
grid_y = torch.arange(H, device=device).view(1, H, 1).expand(1, H, W)
anchors_tensor = torch.tensor(anchors, dtype=torch.float32, device=device)
anchor_w = anchors_tensor[:, 0].view(1, A, 1, 1)
anchor_h = anchors_tensor[:, 1].view(1, A, 1, 1)
x_center = (grid_x + tx) * cell_w
y_center = (grid_y + ty) * cell_h
w = torch.exp(tw) * anchor_w
h = torch.exp(th) * anchor_h
xmin = x_center - w / 2
ymin = y_center - h / 2
xmax = x_center + w / 2
ymax = y_center + h / 2
max_class_probs, class_ids = class_scores.max(dim=-1)
confidence = obj * max_class_probs
outputs = []
for b_i in range(B):
box_xmin = xmin[b_i].view(-1)
box_ymin = ymin[b_i].view(-1)
box_xmax = xmax[b_i].view(-1)
box_ymax = ymax[b_i].view(-1)
conf = confidence[b_i].view(-1)
cls_id = class_ids[b_i].view(-1).float()
mask = (conf > conf_threshold)
box_xmin = box_xmin[mask]
box_ymin = box_ymin[mask]
box_xmax = box_xmax[mask]
box_ymax = box_ymax[mask]
conf = conf[mask]
cls_id = cls_id[mask]
if mask.sum() == 0:
outputs.append(torch.empty((0, 6), device=device))
continue
boxes = torch.stack([box_xmin, box_ymin, box_xmax, box_ymax], dim=-1)
if apply_nms:
keep = ops.nms(boxes, conf, iou_threshold)
boxes = boxes[keep]
conf = conf[keep]
cls_id = cls_id[keep]
out = torch.cat([boxes, conf.unsqueeze(-1), cls_id.unsqueeze(-1)], dim=-1)
outputs.append(out)
return outputs
def decode_predictions_3scales(out_l: torch.Tensor, out_m: torch.Tensor, out_s: torch.Tensor, anchors_l: List[Tuple[int]], anchors_m: List[Tuple[int, int]], anchors_s: List[Tuple[int, int]], image_size: Tuple[int, int] = (416, 416), conf_threshold: float = 0.5, iou_threshold: float = 0.45, num_classes: int = 3) -> List[torch.Tensor]:
b_l = decode_yolo_output_single(out_l, anchors_l, image_size, conf_threshold, iou_threshold, apply_nms=False, num_classes=num_classes)
b_m = decode_yolo_output_single(out_m, anchors_m, image_size, conf_threshold, iou_threshold, apply_nms=False, num_classes=num_classes)
b_s = decode_yolo_output_single(out_s, anchors_s, image_size, conf_threshold, iou_threshold, apply_nms=False, num_classes=num_classes)
results = []
B = len(b_l)
for i in range(B):
boxes_all = torch.cat([b_l[i], b_m[i], b_s[i]], dim=0)
if boxes_all.numel() == 0:
results.append(boxes_all)
continue
xyxy = boxes_all[:, :4]
scores = boxes_all[:, 4]
keep = ops.nms(xyxy, scores, iou_threshold)
final = boxes_all[keep]
results.append(final)
return results
def decode_target_single(target: torch.Tensor, anchors: List[Tuple[int]], image_size: Tuple[int] = (416, 416), obj_threshold: float = 0.5) -> List[torch.Tensor]:
args = parse_args()
target = target.to(args.device)
B, S, _, A, _ = target.shape
img_w, img_h = image_size
cell_w = img_w / S
cell_h = img_h / S
anchors_tensor = torch.tensor(anchors, dtype=torch.float)
tx = target[..., 0]
ty = target[..., 1]
tw = target[..., 2]
th = target[..., 3]
tobj = target[..., 4]
tcls = target[..., 5:]
results = []
for b_i in range(B):
bx_list = []
tx_b = tx[b_i]
ty_b = ty[b_i]
tw_b = tw[b_i]
th_b = th[b_i]
tobj_b = tobj[b_i]
tcls_b = tcls[b_i]
for i in range(S):
for j in range(S):
for a_i in range(A):
if tobj_b[i,j,a_i] < obj_threshold:
continue
cls_one_hot = tcls_b[i, j, a_i]
cls_id = cls_one_hot.argmax().item()
x_center = (j + tx_b[i, j, a_i].item()) * cell_w
y_center = (i + ty_b[i, j, a_i].item()) * cell_h
anchor_w = anchors_tensor[a_i, 0]
anchor_h = anchors_tensor[a_i, 1]
box_w = torch.exp(tw_b[i, j, a_i]) * anchor_w
box_h = torch.exp(th_b[i, j, a_i]) * anchor_h
xmin = x_center - box_w / 2
ymin = y_center - box_h / 2
xmax = x_center + box_w / 2
ymax = y_center + box_h / 2
bx_list.append([xmin.item(), ymin.item(), xmax.item(), ymax.item(), cls_id])
if len(bx_list) == 0:
results.append(torch.empty((0, 5), dtype=torch.float32, device=args.device))
else:
results.append(torch.tensor(bx_list, dtype=torch.float32, device=args.device))
return results
def decode_target_3scales(t_l: torch.Tensor, t_m: torch.Tensor, t_s: torch.Tensor, anchors_l: List[Tuple[int]], anchors_m: List[Tuple[int]], anchors_s: List[Tuple[int]], image_size: Tuple[int] = (416, 416), obj_threshold: float = 0.5) -> List[torch.Tensor]:
dec_l = decode_target_single(t_l, anchors_l, image_size, obj_threshold)
dec_m = decode_target_single(t_m, anchors_m, image_size, obj_threshold)
dec_s = decode_target_single(t_s, anchors_s, image_size, obj_threshold)
results = []
B = len(dec_l)
for i in range(B):
boxes_l = dec_l[i]
boxes_m = dec_m[i]
boxes_s = dec_s[i]
if boxes_l.numel() == 0 and boxes_m.numel() == 0 and boxes_s.numel() == 0:
results.append(torch.empty((0, 5), dtype=torch.float32, device=boxes_l.device))
else:
all_ = torch.cat([boxes_l, boxes_m, boxes_s], dim=0)
results.append(all_)
return results
def iou_xyxy(box1: List[int | float], box2: List[int | float]) -> float:
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
w = max(0., x2 - x1)
h = max(0., y2 - y1)
inter = w * h
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
union = area1 + area2 - inter
return inter / union if union > 0 else 0.0
def compute_ap_per_class(boxes_pred: List[List[float]], boxes_gt: List[List[float]], iou_threshold: float = 0.45) -> float:
boxes_pred = sorted(boxes_pred, key=lambda x: x[4], reverse=True)
n_gt = len(boxes_gt)
if n_gt == 0 and len(boxes_pred) == 0:
return 1.0
if n_gt == 0:
return 0.0
matched = [False] * n_gt
tps = []
fps = []
for i, pred in enumerate(boxes_pred):
best_iou = 0.0
best_j = -1
for j, gt in enumerate(boxes_gt):
if matched[j]:
continue
iou = iou_xyxy(pred, gt)
if iou > best_iou:
best_iou = iou
best_j = j
if best_iou > iou_threshold and best_j >= 0:
tps.append(1)
fps.append(0)
matched[best_j] = True
else:
tps.append(0)
fps.append(1)
tps_cum = []
fps_cum = []
s_tp = 0
s_fp = 0
for i in range(len(tps)):
s_tp += tps[i]
s_fp += fps[i]
tps_cum.append(s_tp)
fps_cum.append(s_fp)
precisions = []
recalls = []
for i in range(len(tps)):
prec = tps_cum[i] / (tps_cum[i] + fps_cum[i]) if (tps_cum[i] + fps_cum[i]) > 0 else 0
rec = tps_cum[i] / n_gt
precisions.append(prec)
recalls.append(rec)
recalls = [0.0] + recalls + [1.0]
precisions = [1.0] + precisions + [0.0]
for i in range(len(precisions) - 2, -1, -1):
precisions[i] = max(precisions[i], precisions[i+1])
ap = 0.0
for i in range(len(precisions) - 1):
ap += (recalls[i+1] - recalls[i]) * precisions[i+1]
return ap
def compute_map(all_pred: List[float], all_gt: List[float], num_classes: int = 3, iou_threshold: float = 0.45) -> float:
APs = []
for c in range(num_classes):
ap_c = compute_ap_per_class(all_pred[c], all_gt[c], iou_threshold)
APs.append(ap_c)
mAP = sum(APs) / len(APs) if len(APs) > 0 else 0.0
return mAP
def parse_args():
parser = argparse.ArgumentParser(description="Train a model on the face mask detection dataset")
parser.add_argument("--root", type=str, default="data/masks", help="Path to the data")
parser.add_argument("--batch-size", type=int, default=16, help="Batch size for training and testing")
parser.add_argument("--logs-dir", type=str, default="yolo-logs", help="Path to save logs")
parser.add_argument("--pin-memory", type=bool, default=True, help="Pin Memory for DataLoader")
parser.add_argument("--num-workers", type=int, default=0, help="Number of workers for DataLoader")
parser.add_argument("--num-epochs", type=int, default=100, help="Number of training epochs")
parser.add_argument("--optimizer", type=str, default="AdamW", help="Optimizer type")
parser.add_argument("--learning-rate", type=float, default=5e-4, help="Learning rate for the optimizer")
parser.add_argument("--save-frequency", type=int, default=4, help="Frequency of saving model weights")
parser.add_argument("--max-norm", type=float, default=10.0, help="Maximum gradient norm for clipping")
parser.add_argument("--project-name", type=str, default="YOLOv3, mask detection", help="Wandb project name")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to run the training on")
parser.add_argument("--weights-path", type=str, default="weights/darknet53.pth", help="Path to the weights")
parser.add_argument("--seed", type=int, default=42, help="Value of the seed")
parser.add_argument("--mixed-precision", type=str, default="fp16", choices=["fp16", "bf16", "fp8", "no"], help="Value of the mixed precision")
parser.add_argument("--gradient-accumulation-steps", type=int, default=2, help="Value of the gradient accumulation steps")
parser.add_argument("--log-steps", type=int, default=13, help="Number of steps between logging training images and metrics")
parser.add_argument("--num-warmup-steps", type=int, default=400, help="Number of steps")
return parser.parse_args()
def main() -> None:
args = parse_args()
set_seed(args.seed)
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision)
with accelerator.main_process_first():
logs_dir = Path(args.logs_dir)
logs_dir.mkdir(exist_ok=True)
wandb.init(project=args.project_name, dir=logs_dir)
train_dataset = MaskDataset(root=args.root, train=True)
test_dataset = MaskDataset(root=args.root, train=False)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, pin_memory=args.pin_memory, num_workers=args.num_workers, collate_fn=collate_fn)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=args.pin_memory, num_workers=args.num_workers, collate_fn=collate_fn)
model = YOLOv3().to(accelerator.device)
optimizer_class = getattr(torch.optim, args.optimizer)
if args.weights_path:
weights = torch.load(args.weights_path, map_location="cpu", weights_only=True)
model.backbone.load_state_dict(weights)
optimizer = optimizer_class(model.parameters(), lr=args.learning_rate)
criterion = YoloLoss(class_counts=train_dataset.class_counts)
scheduler = WarmupCosineAnnealingLR(optimizer, warmup_steps=args.num_warmup_steps//args.gradient_accumulation_steps, total_steps=args.num_epochs*len(train_loader)//args.gradient_accumulation_steps, eta_min=1e-7)
model, optimizer, train_loader = accelerator.prepare(model, optimizer, train_loader)
best_map = 0.0
train_loss_ema = EMA()
for epoch in range(1, args.num_epochs + 1):
model.train()
pbar = tqdm(train_loader, desc = f"Train epoch {epoch} / {args.num_epochs}")
for images, (t_l, t_m, t_s) in pbar:
images = images.to(accelerator.device)
t_l = t_l.to(accelerator.device)
t_m = t_m.to(accelerator.device)
t_s = t_s.to(accelerator.device)
with accelerator.accumulate(model):
with accelerator.autocast():
out_l, out_m, out_s = model(images)
loss = criterion((out_l, out_m, out_s), (t_l, t_m, t_s))
accelerator.backward(loss)
grad_norm = None
if accelerator.sync_gradients:
grad_norm = accelerator.clip_grad_norm_(model.parameters(), args.max_norm).item()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
lr = scheduler.get_last_lr()[0]
pbar.set_postfix({"loss": train_loss_ema(loss.item())})
log_data = {
"train/epoch": epoch,
"train/loss": loss.item(),
"train/lr": lr
}
if grad_norm is not None:
log_data["train/grad_norm"] = grad_norm
if accelerator.is_main_process:
wandb.log(log_data)
accelerator.wait_for_everyone()
model.eval()
all_pred = [[] for _ in range(model.num_classes)]
all_gt = [[] for _ in range(model.num_classes)]
with torch.inference_mode():
test_loss = 0.0
pbar = tqdm(test_loader, desc=f"Test epoch {epoch} / {args.num_epochs}")
for index, (images, (t_l, t_m, t_s)) in enumerate(pbar):
images = images.to(accelerator.device)
t_l = t_l.to(accelerator.device)
t_m = t_m.to(accelerator.device)
t_s = t_s.to(accelerator.device)
out_l, out_m, out_s = model(images)
loss = criterion((out_l, out_m, out_s), (t_l, t_m, t_s))
test_loss += loss.item()
results = decode_predictions_3scales(out_l, out_m, out_s, ANCHORS["large"], ANCHORS["medium"], ANCHORS["small"])
gt_batch = decode_target_3scales(t_l, t_m, t_s, ANCHORS["large"], ANCHORS["medium"], ANCHORS["small"])
if (index + 1) % args.log_steps == 0 and accelerator.is_main_process:
images_to_log = []
combined_image = create_combined_image(images, gt_batch, results)
images_to_log.append(wandb.Image(combined_image, caption=f"Combined Image (Test, Epoch {epoch})"))
wandb.log({"test_samples": images_to_log})
for b_i in range(len(images)):
dets_b = results[b_i].detach().cpu().numpy()
gts_b = gt_batch[b_i].detach().cpu().numpy()
for db in dets_b:
c = int(db[5])
all_pred[c].append([db[0], db[1], db[2], db[3], db[4]])
for gb in gts_b:
c = int(gb[4])
all_gt[c].append([gb[0], gb[1], gb[2], gb[3]])
test_loss /= len(test_loader)
test_map = compute_map(all_pred, all_gt)
accelerator.print(f"loss: {test_loss:.3f}, map: {test_map:.3f}")
if accelerator.is_main_process:
wandb.log({
"epoch": epoch,
"test/loss": test_loss,
"test/mAP": test_map
})
if test_map > best_map:
best_map = test_map
accelerator.save(model.state_dict(), logs_dir / "checkpoint-best.pth")
elif epoch % args.save_frequency == 0:
accelerator.save(model.state_dict(), logs_dir / f"checkpoint-{epoch:09}.pth")
accelerator.wait_for_everyone()
accelerator.wait_for_everyone()
wandb.finish()
if __name__ == "__main__":
main()