Spaces:
Running
Running
File size: 20,740 Bytes
f514e23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import math
from pathlib import Path
from typing import List, Tuple, Dict
from tqdm import tqdm
import argparse
from accelerate import Accelerator
from accelerate.utils import set_seed
import wandb
import torch
from torch import nn
from torch.utils.data import DataLoader
import torchvision.ops as ops
import PIL
import numpy as np
from dataset import MaskDataset, collate_fn, ANCHORS
from utils import EMA
from models.yolov3 import YOLOv3
from loss import YoloLoss
class WarmupCosineAnnealingLR(torch.optim.lr_scheduler._LRScheduler):
def __init__(self, optimizer: torch.optim.Optimizer, warmup_steps: int, total_steps: int, eta_min: int = 0, last_epoch: int = -1) -> None:
self.warmup_steps = warmup_steps
self.total_steps = total_steps
self.eta_min = eta_min
super().__init__(optimizer, last_epoch)
def get_lr(self) -> List[float]:
if self.last_epoch < self.warmup_steps:
return [base_lr * (self.last_epoch / max(1, self.warmup_steps)) for base_lr in self.base_lrs]
else:
current_step = self.last_epoch - self.warmup_steps
cosine_steps = max(1, self.total_steps - self.warmup_steps)
return [self.eta_min + (base_lr - self.eta_min) * 0.5 * (1 + math.cos(math.pi * current_step / cosine_steps)) for base_lr in self.base_lrs]
def draw_bounding_boxes(image: PIL.Image.Image, boxes: torch.Tensor, colors: Dict[int, int] = {0: (178, 34, 34), 1: (34, 139, 34), 2: (184, 134, 11)}, labels = {0: "without_mask", 1: "with_mask", 2: "weared_incorrect"}, show_conf = False) -> None:
draw = PIL.ImageDraw.Draw(image)
for box in boxes:
xmin, ymin, xmax, ymax, class_id = int(box[0]), int(box[1]), int(box[2]), int(box[3]), int(box[-1])
conf_text = ""
if show_conf and box.shape[0] == 6:
conf = float(box[4])
conf_text = f" {conf:.2f}"
color = colors.get(class_id, (255, 255, 255))
label = labels.get(class_id, "Unknown") + conf_text
draw.rectangle([xmin, ymin, xmax, ymax], outline=color, width=2)
text_bbox = draw.textbbox((xmin, ymin), label)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
draw.rectangle([xmin, ymin - text_height - 2, xmin + text_width + 2, ymin], fill=color)
draw.text((xmin + 1, ymin - text_height - 1), label, fill="white")
def create_combined_image(img: torch.Tensor, gt_batch: List[torch.Tensor], results: List[torch.Tensor], mean: List[float] = [0.485, 0.456, 0.406], std: List[float] = [0.229, 0.224, 0.225]):
batch_size, _, height, width = img.shape
combined_height = height * 2
combined_width = width * batch_size
combined_image = np.zeros((combined_height, combined_width, 3), dtype=np.uint8)
for i in range(batch_size):
image = img[i].cpu().permute(1, 2, 0).numpy()
image = (image * std + mean).clip(0, 1)
image = (image * 255).astype(np.uint8)
gt_image = PIL.Image.fromarray(image.copy())
pred_image = PIL.Image.fromarray(image.copy())
draw_bounding_boxes(gt_image, gt_batch[i])
draw_bounding_boxes(pred_image, results[i], show_conf=True)
combined_image[:height, i * width:(i + 1) * width, :] = np.array(gt_image)
combined_image[height:, i * width:(i + 1) * width, :] = np.array(pred_image)
return PIL.Image.fromarray(combined_image)
def decode_yolo_output_single(prediction: torch.Tensor, anchors: List[Tuple[int]], image_size: Tuple[int] = (416, 416), conf_threshold: float = 0.5, iou_threshold: float = 0.3, apply_nms: bool = True, num_classes: int = 3) -> List[torch.Tensor]:
device = prediction.device
B, _, H, W = prediction.shape
A = len(anchors)
prediction = prediction.view(B, A, 5 + num_classes, H, W)
prediction = prediction.permute(0, 1, 3, 4, 2).contiguous()
tx = prediction[..., 0]
ty = prediction[..., 1]
tw = prediction[..., 2]
th = prediction[..., 3]
obj = prediction[..., 4]
class_scores = prediction[..., 5:]
tx = tx.sigmoid()
ty = ty.sigmoid()
obj = obj.sigmoid()
class_scores = class_scores.softmax(dim=-1)
img_w, img_h = image_size
cell_w = img_w / W
cell_h = img_h / H
grid_x = torch.arange(W, device=device).view(1, 1, W).expand(1, H, W)
grid_y = torch.arange(H, device=device).view(1, H, 1).expand(1, H, W)
anchors_tensor = torch.tensor(anchors, dtype=torch.float32, device=device)
anchor_w = anchors_tensor[:, 0].view(1, A, 1, 1)
anchor_h = anchors_tensor[:, 1].view(1, A, 1, 1)
x_center = (grid_x + tx) * cell_w
y_center = (grid_y + ty) * cell_h
w = torch.exp(tw) * anchor_w
h = torch.exp(th) * anchor_h
xmin = x_center - w / 2
ymin = y_center - h / 2
xmax = x_center + w / 2
ymax = y_center + h / 2
max_class_probs, class_ids = class_scores.max(dim=-1)
confidence = obj * max_class_probs
outputs = []
for b_i in range(B):
box_xmin = xmin[b_i].view(-1)
box_ymin = ymin[b_i].view(-1)
box_xmax = xmax[b_i].view(-1)
box_ymax = ymax[b_i].view(-1)
conf = confidence[b_i].view(-1)
cls_id = class_ids[b_i].view(-1).float()
mask = (conf > conf_threshold)
box_xmin = box_xmin[mask]
box_ymin = box_ymin[mask]
box_xmax = box_xmax[mask]
box_ymax = box_ymax[mask]
conf = conf[mask]
cls_id = cls_id[mask]
if mask.sum() == 0:
outputs.append(torch.empty((0, 6), device=device))
continue
boxes = torch.stack([box_xmin, box_ymin, box_xmax, box_ymax], dim=-1)
if apply_nms:
keep = ops.nms(boxes, conf, iou_threshold)
boxes = boxes[keep]
conf = conf[keep]
cls_id = cls_id[keep]
out = torch.cat([boxes, conf.unsqueeze(-1), cls_id.unsqueeze(-1)], dim=-1)
outputs.append(out)
return outputs
def decode_predictions_3scales(out_l: torch.Tensor, out_m: torch.Tensor, out_s: torch.Tensor, anchors_l: List[Tuple[int]], anchors_m: List[Tuple[int, int]], anchors_s: List[Tuple[int, int]], image_size: Tuple[int, int] = (416, 416), conf_threshold: float = 0.5, iou_threshold: float = 0.45, num_classes: int = 3) -> List[torch.Tensor]:
b_l = decode_yolo_output_single(out_l, anchors_l, image_size, conf_threshold, iou_threshold, apply_nms=False, num_classes=num_classes)
b_m = decode_yolo_output_single(out_m, anchors_m, image_size, conf_threshold, iou_threshold, apply_nms=False, num_classes=num_classes)
b_s = decode_yolo_output_single(out_s, anchors_s, image_size, conf_threshold, iou_threshold, apply_nms=False, num_classes=num_classes)
results = []
B = len(b_l)
for i in range(B):
boxes_all = torch.cat([b_l[i], b_m[i], b_s[i]], dim=0)
if boxes_all.numel() == 0:
results.append(boxes_all)
continue
xyxy = boxes_all[:, :4]
scores = boxes_all[:, 4]
keep = ops.nms(xyxy, scores, iou_threshold)
final = boxes_all[keep]
results.append(final)
return results
def decode_target_single(target: torch.Tensor, anchors: List[Tuple[int]], image_size: Tuple[int] = (416, 416), obj_threshold: float = 0.5) -> List[torch.Tensor]:
args = parse_args()
target = target.to(args.device)
B, S, _, A, _ = target.shape
img_w, img_h = image_size
cell_w = img_w / S
cell_h = img_h / S
anchors_tensor = torch.tensor(anchors, dtype=torch.float)
tx = target[..., 0]
ty = target[..., 1]
tw = target[..., 2]
th = target[..., 3]
tobj = target[..., 4]
tcls = target[..., 5:]
results = []
for b_i in range(B):
bx_list = []
tx_b = tx[b_i]
ty_b = ty[b_i]
tw_b = tw[b_i]
th_b = th[b_i]
tobj_b = tobj[b_i]
tcls_b = tcls[b_i]
for i in range(S):
for j in range(S):
for a_i in range(A):
if tobj_b[i,j,a_i] < obj_threshold:
continue
cls_one_hot = tcls_b[i, j, a_i]
cls_id = cls_one_hot.argmax().item()
x_center = (j + tx_b[i, j, a_i].item()) * cell_w
y_center = (i + ty_b[i, j, a_i].item()) * cell_h
anchor_w = anchors_tensor[a_i, 0]
anchor_h = anchors_tensor[a_i, 1]
box_w = torch.exp(tw_b[i, j, a_i]) * anchor_w
box_h = torch.exp(th_b[i, j, a_i]) * anchor_h
xmin = x_center - box_w / 2
ymin = y_center - box_h / 2
xmax = x_center + box_w / 2
ymax = y_center + box_h / 2
bx_list.append([xmin.item(), ymin.item(), xmax.item(), ymax.item(), cls_id])
if len(bx_list) == 0:
results.append(torch.empty((0, 5), dtype=torch.float32, device=args.device))
else:
results.append(torch.tensor(bx_list, dtype=torch.float32, device=args.device))
return results
def decode_target_3scales(t_l: torch.Tensor, t_m: torch.Tensor, t_s: torch.Tensor, anchors_l: List[Tuple[int]], anchors_m: List[Tuple[int]], anchors_s: List[Tuple[int]], image_size: Tuple[int] = (416, 416), obj_threshold: float = 0.5) -> List[torch.Tensor]:
dec_l = decode_target_single(t_l, anchors_l, image_size, obj_threshold)
dec_m = decode_target_single(t_m, anchors_m, image_size, obj_threshold)
dec_s = decode_target_single(t_s, anchors_s, image_size, obj_threshold)
results = []
B = len(dec_l)
for i in range(B):
boxes_l = dec_l[i]
boxes_m = dec_m[i]
boxes_s = dec_s[i]
if boxes_l.numel() == 0 and boxes_m.numel() == 0 and boxes_s.numel() == 0:
results.append(torch.empty((0, 5), dtype=torch.float32, device=boxes_l.device))
else:
all_ = torch.cat([boxes_l, boxes_m, boxes_s], dim=0)
results.append(all_)
return results
def iou_xyxy(box1: List[int | float], box2: List[int | float]) -> float:
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
w = max(0., x2 - x1)
h = max(0., y2 - y1)
inter = w * h
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
union = area1 + area2 - inter
return inter / union if union > 0 else 0.0
def compute_ap_per_class(boxes_pred: List[List[float]], boxes_gt: List[List[float]], iou_threshold: float = 0.45) -> float:
boxes_pred = sorted(boxes_pred, key=lambda x: x[4], reverse=True)
n_gt = len(boxes_gt)
if n_gt == 0 and len(boxes_pred) == 0:
return 1.0
if n_gt == 0:
return 0.0
matched = [False] * n_gt
tps = []
fps = []
for i, pred in enumerate(boxes_pred):
best_iou = 0.0
best_j = -1
for j, gt in enumerate(boxes_gt):
if matched[j]:
continue
iou = iou_xyxy(pred, gt)
if iou > best_iou:
best_iou = iou
best_j = j
if best_iou > iou_threshold and best_j >= 0:
tps.append(1)
fps.append(0)
matched[best_j] = True
else:
tps.append(0)
fps.append(1)
tps_cum = []
fps_cum = []
s_tp = 0
s_fp = 0
for i in range(len(tps)):
s_tp += tps[i]
s_fp += fps[i]
tps_cum.append(s_tp)
fps_cum.append(s_fp)
precisions = []
recalls = []
for i in range(len(tps)):
prec = tps_cum[i] / (tps_cum[i] + fps_cum[i]) if (tps_cum[i] + fps_cum[i]) > 0 else 0
rec = tps_cum[i] / n_gt
precisions.append(prec)
recalls.append(rec)
recalls = [0.0] + recalls + [1.0]
precisions = [1.0] + precisions + [0.0]
for i in range(len(precisions) - 2, -1, -1):
precisions[i] = max(precisions[i], precisions[i+1])
ap = 0.0
for i in range(len(precisions) - 1):
ap += (recalls[i+1] - recalls[i]) * precisions[i+1]
return ap
def compute_map(all_pred: List[float], all_gt: List[float], num_classes: int = 3, iou_threshold: float = 0.45) -> float:
APs = []
for c in range(num_classes):
ap_c = compute_ap_per_class(all_pred[c], all_gt[c], iou_threshold)
APs.append(ap_c)
mAP = sum(APs) / len(APs) if len(APs) > 0 else 0.0
return mAP
def parse_args():
parser = argparse.ArgumentParser(description="Train a model on the face mask detection dataset")
parser.add_argument("--root", type=str, default="data/masks", help="Path to the data")
parser.add_argument("--batch-size", type=int, default=16, help="Batch size for training and testing")
parser.add_argument("--logs-dir", type=str, default="yolo-logs", help="Path to save logs")
parser.add_argument("--pin-memory", type=bool, default=True, help="Pin Memory for DataLoader")
parser.add_argument("--num-workers", type=int, default=0, help="Number of workers for DataLoader")
parser.add_argument("--num-epochs", type=int, default=100, help="Number of training epochs")
parser.add_argument("--optimizer", type=str, default="AdamW", help="Optimizer type")
parser.add_argument("--learning-rate", type=float, default=5e-4, help="Learning rate for the optimizer")
parser.add_argument("--save-frequency", type=int, default=4, help="Frequency of saving model weights")
parser.add_argument("--max-norm", type=float, default=10.0, help="Maximum gradient norm for clipping")
parser.add_argument("--project-name", type=str, default="YOLOv3, mask detection", help="Wandb project name")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to run the training on")
parser.add_argument("--weights-path", type=str, default="weights/darknet53.pth", help="Path to the weights")
parser.add_argument("--seed", type=int, default=42, help="Value of the seed")
parser.add_argument("--mixed-precision", type=str, default="fp16", choices=["fp16", "bf16", "fp8", "no"], help="Value of the mixed precision")
parser.add_argument("--gradient-accumulation-steps", type=int, default=2, help="Value of the gradient accumulation steps")
parser.add_argument("--log-steps", type=int, default=13, help="Number of steps between logging training images and metrics")
parser.add_argument("--num-warmup-steps", type=int, default=400, help="Number of steps")
return parser.parse_args()
def main() -> None:
args = parse_args()
set_seed(args.seed)
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision)
with accelerator.main_process_first():
logs_dir = Path(args.logs_dir)
logs_dir.mkdir(exist_ok=True)
wandb.init(project=args.project_name, dir=logs_dir)
train_dataset = MaskDataset(root=args.root, train=True)
test_dataset = MaskDataset(root=args.root, train=False)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, pin_memory=args.pin_memory, num_workers=args.num_workers, collate_fn=collate_fn)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=args.pin_memory, num_workers=args.num_workers, collate_fn=collate_fn)
model = YOLOv3().to(accelerator.device)
optimizer_class = getattr(torch.optim, args.optimizer)
if args.weights_path:
weights = torch.load(args.weights_path, map_location="cpu", weights_only=True)
model.backbone.load_state_dict(weights)
optimizer = optimizer_class(model.parameters(), lr=args.learning_rate)
criterion = YoloLoss(class_counts=train_dataset.class_counts)
scheduler = WarmupCosineAnnealingLR(optimizer, warmup_steps=args.num_warmup_steps//args.gradient_accumulation_steps, total_steps=args.num_epochs*len(train_loader)//args.gradient_accumulation_steps, eta_min=1e-7)
model, optimizer, train_loader = accelerator.prepare(model, optimizer, train_loader)
best_map = 0.0
train_loss_ema = EMA()
for epoch in range(1, args.num_epochs + 1):
model.train()
pbar = tqdm(train_loader, desc = f"Train epoch {epoch} / {args.num_epochs}")
for images, (t_l, t_m, t_s) in pbar:
images = images.to(accelerator.device)
t_l = t_l.to(accelerator.device)
t_m = t_m.to(accelerator.device)
t_s = t_s.to(accelerator.device)
with accelerator.accumulate(model):
with accelerator.autocast():
out_l, out_m, out_s = model(images)
loss = criterion((out_l, out_m, out_s), (t_l, t_m, t_s))
accelerator.backward(loss)
grad_norm = None
if accelerator.sync_gradients:
grad_norm = accelerator.clip_grad_norm_(model.parameters(), args.max_norm).item()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
lr = scheduler.get_last_lr()[0]
pbar.set_postfix({"loss": train_loss_ema(loss.item())})
log_data = {
"train/epoch": epoch,
"train/loss": loss.item(),
"train/lr": lr
}
if grad_norm is not None:
log_data["train/grad_norm"] = grad_norm
if accelerator.is_main_process:
wandb.log(log_data)
accelerator.wait_for_everyone()
model.eval()
all_pred = [[] for _ in range(model.num_classes)]
all_gt = [[] for _ in range(model.num_classes)]
with torch.inference_mode():
test_loss = 0.0
pbar = tqdm(test_loader, desc=f"Test epoch {epoch} / {args.num_epochs}")
for index, (images, (t_l, t_m, t_s)) in enumerate(pbar):
images = images.to(accelerator.device)
t_l = t_l.to(accelerator.device)
t_m = t_m.to(accelerator.device)
t_s = t_s.to(accelerator.device)
out_l, out_m, out_s = model(images)
loss = criterion((out_l, out_m, out_s), (t_l, t_m, t_s))
test_loss += loss.item()
results = decode_predictions_3scales(out_l, out_m, out_s, ANCHORS["large"], ANCHORS["medium"], ANCHORS["small"])
gt_batch = decode_target_3scales(t_l, t_m, t_s, ANCHORS["large"], ANCHORS["medium"], ANCHORS["small"])
if (index + 1) % args.log_steps == 0 and accelerator.is_main_process:
images_to_log = []
combined_image = create_combined_image(images, gt_batch, results)
images_to_log.append(wandb.Image(combined_image, caption=f"Combined Image (Test, Epoch {epoch})"))
wandb.log({"test_samples": images_to_log})
for b_i in range(len(images)):
dets_b = results[b_i].detach().cpu().numpy()
gts_b = gt_batch[b_i].detach().cpu().numpy()
for db in dets_b:
c = int(db[5])
all_pred[c].append([db[0], db[1], db[2], db[3], db[4]])
for gb in gts_b:
c = int(gb[4])
all_gt[c].append([gb[0], gb[1], gb[2], gb[3]])
test_loss /= len(test_loader)
test_map = compute_map(all_pred, all_gt)
accelerator.print(f"loss: {test_loss:.3f}, map: {test_map:.3f}")
if accelerator.is_main_process:
wandb.log({
"epoch": epoch,
"test/loss": test_loss,
"test/mAP": test_map
})
if test_map > best_map:
best_map = test_map
accelerator.save(model.state_dict(), logs_dir / "checkpoint-best.pth")
elif epoch % args.save_frequency == 0:
accelerator.save(model.state_dict(), logs_dir / f"checkpoint-{epoch:09}.pth")
accelerator.wait_for_everyone()
accelerator.wait_for_everyone()
wandb.finish()
if __name__ == "__main__":
main() |