File size: 20,740 Bytes
f514e23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import math
from pathlib import Path
from typing import List, Tuple, Dict
from tqdm import tqdm
import argparse
from accelerate import Accelerator
from accelerate.utils import set_seed
import wandb
import torch
from torch import nn
from torch.utils.data import DataLoader
import torchvision.ops as ops
import PIL
import numpy as np

from dataset import MaskDataset, collate_fn, ANCHORS
from utils import EMA
from models.yolov3 import YOLOv3
from loss import YoloLoss


class WarmupCosineAnnealingLR(torch.optim.lr_scheduler._LRScheduler):
    def __init__(self, optimizer: torch.optim.Optimizer, warmup_steps: int, total_steps: int, eta_min: int = 0, last_epoch: int = -1) -> None:
        self.warmup_steps = warmup_steps
        self.total_steps = total_steps
        self.eta_min = eta_min
        super().__init__(optimizer, last_epoch)

    def get_lr(self) -> List[float]:
        if self.last_epoch < self.warmup_steps:
            return [base_lr * (self.last_epoch / max(1, self.warmup_steps)) for base_lr in self.base_lrs]
        else:
            current_step = self.last_epoch - self.warmup_steps
            cosine_steps = max(1, self.total_steps - self.warmup_steps)
            return [self.eta_min + (base_lr - self.eta_min) * 0.5 * (1 + math.cos(math.pi * current_step / cosine_steps)) for base_lr in self.base_lrs]


def draw_bounding_boxes(image: PIL.Image.Image, boxes: torch.Tensor, colors: Dict[int, int] = {0: (178, 34, 34), 1: (34, 139, 34), 2: (184, 134, 11)}, labels = {0: "without_mask", 1: "with_mask", 2: "weared_incorrect"}, show_conf = False) -> None:
    draw = PIL.ImageDraw.Draw(image)
    for box in boxes:
        xmin, ymin, xmax, ymax, class_id = int(box[0]), int(box[1]), int(box[2]), int(box[3]), int(box[-1])
        conf_text = ""
        if show_conf and box.shape[0] == 6:
            conf = float(box[4])
            conf_text = f" {conf:.2f}"
        color = colors.get(class_id, (255, 255, 255))
        label = labels.get(class_id, "Unknown") + conf_text
        draw.rectangle([xmin, ymin, xmax, ymax], outline=color, width=2)
        text_bbox = draw.textbbox((xmin, ymin), label)
        text_width = text_bbox[2] - text_bbox[0]
        text_height = text_bbox[3] - text_bbox[1]
        draw.rectangle([xmin, ymin - text_height - 2, xmin + text_width + 2, ymin], fill=color)
        draw.text((xmin + 1, ymin - text_height - 1), label, fill="white")


def create_combined_image(img: torch.Tensor, gt_batch: List[torch.Tensor], results: List[torch.Tensor], mean: List[float] = [0.485, 0.456, 0.406], std: List[float] = [0.229, 0.224, 0.225]):
    batch_size, _, height, width = img.shape
    combined_height = height * 2
    combined_width = width * batch_size
    combined_image = np.zeros((combined_height, combined_width, 3), dtype=np.uint8)

    for i in range(batch_size):
        image = img[i].cpu().permute(1, 2, 0).numpy()
        image = (image * std + mean).clip(0, 1)
        image = (image * 255).astype(np.uint8)
        gt_image = PIL.Image.fromarray(image.copy())
        pred_image = PIL.Image.fromarray(image.copy())
        draw_bounding_boxes(gt_image, gt_batch[i])
        draw_bounding_boxes(pred_image, results[i], show_conf=True)
        combined_image[:height, i * width:(i + 1) * width, :] = np.array(gt_image)
        combined_image[height:, i * width:(i + 1) * width, :] = np.array(pred_image)
    return PIL.Image.fromarray(combined_image)


def decode_yolo_output_single(prediction: torch.Tensor, anchors: List[Tuple[int]], image_size: Tuple[int] = (416, 416), conf_threshold: float = 0.5, iou_threshold: float = 0.3, apply_nms: bool = True, num_classes: int = 3) -> List[torch.Tensor]:
    device = prediction.device
    B, _, H, W = prediction.shape
    A = len(anchors)
    prediction = prediction.view(B, A, 5 + num_classes, H, W)
    prediction = prediction.permute(0, 1, 3, 4, 2).contiguous()
    tx = prediction[..., 0]
    ty = prediction[..., 1]
    tw = prediction[..., 2]
    th = prediction[..., 3]
    obj = prediction[..., 4]
    class_scores = prediction[..., 5:]
    tx = tx.sigmoid()
    ty = ty.sigmoid()
    obj = obj.sigmoid()
    class_scores = class_scores.softmax(dim=-1)
    img_w, img_h = image_size
    cell_w = img_w / W
    cell_h = img_h / H
    grid_x = torch.arange(W, device=device).view(1, 1, W).expand(1, H, W)
    grid_y = torch.arange(H, device=device).view(1, H, 1).expand(1, H, W)
    anchors_tensor = torch.tensor(anchors, dtype=torch.float32, device=device)
    anchor_w = anchors_tensor[:, 0].view(1, A, 1, 1)
    anchor_h = anchors_tensor[:, 1].view(1, A, 1, 1)
    x_center = (grid_x + tx) * cell_w
    y_center = (grid_y + ty) * cell_h
    w = torch.exp(tw) * anchor_w
    h = torch.exp(th) * anchor_h
    xmin = x_center - w / 2
    ymin = y_center - h / 2
    xmax = x_center + w / 2
    ymax = y_center + h / 2
    max_class_probs, class_ids = class_scores.max(dim=-1)
    confidence = obj * max_class_probs
    outputs = []
    for b_i in range(B):
        box_xmin = xmin[b_i].view(-1)
        box_ymin = ymin[b_i].view(-1)
        box_xmax = xmax[b_i].view(-1)
        box_ymax = ymax[b_i].view(-1)
        conf = confidence[b_i].view(-1)
        cls_id = class_ids[b_i].view(-1).float()
        mask = (conf > conf_threshold)
        box_xmin = box_xmin[mask]
        box_ymin = box_ymin[mask]
        box_xmax = box_xmax[mask]
        box_ymax = box_ymax[mask]
        conf = conf[mask]
        cls_id = cls_id[mask]
        if mask.sum() == 0:
            outputs.append(torch.empty((0, 6), device=device))
            continue
        boxes = torch.stack([box_xmin, box_ymin, box_xmax, box_ymax], dim=-1)
        if apply_nms:
            keep = ops.nms(boxes, conf, iou_threshold)
            boxes = boxes[keep]
            conf = conf[keep]
            cls_id = cls_id[keep]
        out = torch.cat([boxes, conf.unsqueeze(-1), cls_id.unsqueeze(-1)], dim=-1)
        outputs.append(out)
    return outputs


def decode_predictions_3scales(out_l: torch.Tensor, out_m: torch.Tensor, out_s: torch.Tensor, anchors_l: List[Tuple[int]], anchors_m: List[Tuple[int, int]], anchors_s: List[Tuple[int, int]], image_size: Tuple[int, int] = (416, 416), conf_threshold: float = 0.5, iou_threshold: float = 0.45, num_classes: int = 3) -> List[torch.Tensor]:
    b_l = decode_yolo_output_single(out_l, anchors_l, image_size, conf_threshold, iou_threshold, apply_nms=False, num_classes=num_classes)
    b_m = decode_yolo_output_single(out_m, anchors_m, image_size, conf_threshold, iou_threshold, apply_nms=False, num_classes=num_classes)
    b_s = decode_yolo_output_single(out_s, anchors_s, image_size, conf_threshold, iou_threshold, apply_nms=False, num_classes=num_classes)
    results = []
    B = len(b_l)
    for i in range(B):
        boxes_all = torch.cat([b_l[i], b_m[i], b_s[i]], dim=0)
        if boxes_all.numel() == 0:
            results.append(boxes_all)
            continue
        xyxy = boxes_all[:, :4]
        scores = boxes_all[:, 4]
        keep = ops.nms(xyxy, scores, iou_threshold)
        final = boxes_all[keep]
        results.append(final)
    return results


def decode_target_single(target: torch.Tensor, anchors: List[Tuple[int]], image_size: Tuple[int] = (416, 416), obj_threshold: float = 0.5) -> List[torch.Tensor]:
    args = parse_args()
    target = target.to(args.device)
    B, S, _, A, _ = target.shape
    img_w, img_h = image_size
    cell_w = img_w / S
    cell_h = img_h / S
    anchors_tensor = torch.tensor(anchors, dtype=torch.float)
    tx = target[..., 0]
    ty = target[..., 1]
    tw = target[..., 2]
    th = target[..., 3]
    tobj = target[..., 4]
    tcls = target[..., 5:]
    results = []
    for b_i in range(B):
        bx_list = []
        tx_b = tx[b_i]
        ty_b = ty[b_i]
        tw_b = tw[b_i]
        th_b = th[b_i]
        tobj_b = tobj[b_i]
        tcls_b = tcls[b_i]
        for i in range(S):
            for j in range(S):
                for a_i in range(A):
                    if tobj_b[i,j,a_i] < obj_threshold:
                        continue
                    cls_one_hot = tcls_b[i, j, a_i]
                    cls_id = cls_one_hot.argmax().item()
                    x_center = (j + tx_b[i, j, a_i].item()) * cell_w
                    y_center = (i + ty_b[i, j, a_i].item()) * cell_h
                    anchor_w = anchors_tensor[a_i, 0]
                    anchor_h = anchors_tensor[a_i, 1]
                    box_w = torch.exp(tw_b[i, j, a_i]) * anchor_w
                    box_h = torch.exp(th_b[i, j, a_i]) * anchor_h
                    xmin = x_center - box_w / 2
                    ymin = y_center - box_h / 2
                    xmax = x_center + box_w / 2
                    ymax = y_center + box_h / 2
                    bx_list.append([xmin.item(), ymin.item(), xmax.item(), ymax.item(), cls_id])
        if len(bx_list) == 0:
            results.append(torch.empty((0, 5), dtype=torch.float32, device=args.device))
        else:
            results.append(torch.tensor(bx_list, dtype=torch.float32, device=args.device))
    return results


def decode_target_3scales(t_l: torch.Tensor, t_m: torch.Tensor, t_s: torch.Tensor, anchors_l: List[Tuple[int]], anchors_m: List[Tuple[int]], anchors_s: List[Tuple[int]], image_size: Tuple[int] = (416, 416), obj_threshold: float = 0.5) -> List[torch.Tensor]:
    dec_l = decode_target_single(t_l, anchors_l, image_size, obj_threshold)
    dec_m = decode_target_single(t_m, anchors_m, image_size, obj_threshold)
    dec_s = decode_target_single(t_s, anchors_s, image_size, obj_threshold)
    results = []
    B = len(dec_l)
    for i in range(B):
        boxes_l = dec_l[i]
        boxes_m = dec_m[i]
        boxes_s = dec_s[i]
        if boxes_l.numel() == 0 and boxes_m.numel() == 0 and boxes_s.numel() == 0:
            results.append(torch.empty((0, 5), dtype=torch.float32, device=boxes_l.device))
        else:
            all_ = torch.cat([boxes_l, boxes_m, boxes_s], dim=0)
            results.append(all_)
    return results


def iou_xyxy(box1: List[int | float], box2: List[int | float]) -> float:
    x1 = max(box1[0], box2[0])
    y1 = max(box1[1], box2[1])
    x2 = min(box1[2], box2[2])
    y2 = min(box1[3], box2[3])
    w = max(0., x2 - x1)
    h = max(0., y2 - y1)
    inter = w * h
    area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
    area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
    union = area1 + area2 - inter
    return inter / union if union > 0 else 0.0


def compute_ap_per_class(boxes_pred: List[List[float]], boxes_gt: List[List[float]], iou_threshold: float = 0.45) -> float:
    boxes_pred = sorted(boxes_pred, key=lambda x: x[4], reverse=True)
    n_gt = len(boxes_gt)
    if n_gt == 0 and len(boxes_pred) == 0:
        return 1.0
    if n_gt == 0:
        return 0.0
    matched = [False] * n_gt
    tps = []
    fps = []
    for i, pred in enumerate(boxes_pred):
        best_iou = 0.0
        best_j = -1
        for j, gt in enumerate(boxes_gt):
            if matched[j]:
                continue
            iou = iou_xyxy(pred, gt)
            if iou > best_iou:
                best_iou = iou
                best_j = j
        if best_iou > iou_threshold and best_j >= 0:
            tps.append(1)
            fps.append(0)
            matched[best_j] = True
        else:
            tps.append(0)
            fps.append(1)
    tps_cum = []
    fps_cum = []
    s_tp = 0
    s_fp = 0
    for i in range(len(tps)):
        s_tp += tps[i]
        s_fp += fps[i]
        tps_cum.append(s_tp)
        fps_cum.append(s_fp)
    precisions = []
    recalls = []
    for i in range(len(tps)):
        prec = tps_cum[i] / (tps_cum[i] + fps_cum[i]) if (tps_cum[i] + fps_cum[i]) > 0 else 0
        rec = tps_cum[i] / n_gt
        precisions.append(prec)
        recalls.append(rec)
    recalls = [0.0] + recalls + [1.0]
    precisions = [1.0] + precisions + [0.0]
    for i in range(len(precisions) - 2, -1, -1):
        precisions[i] = max(precisions[i], precisions[i+1])
    ap = 0.0
    for i in range(len(precisions) - 1):
        ap += (recalls[i+1] - recalls[i]) * precisions[i+1]
    return ap


def compute_map(all_pred: List[float], all_gt: List[float], num_classes: int = 3, iou_threshold: float = 0.45) -> float:
    APs = []
    for c in range(num_classes):
        ap_c = compute_ap_per_class(all_pred[c], all_gt[c], iou_threshold)
        APs.append(ap_c)
    mAP = sum(APs) / len(APs) if len(APs) > 0 else 0.0
    return mAP


def parse_args():
    parser = argparse.ArgumentParser(description="Train a model on the face mask detection dataset")
    parser.add_argument("--root", type=str, default="data/masks", help="Path to the data")
    parser.add_argument("--batch-size", type=int, default=16, help="Batch size for training and testing")
    parser.add_argument("--logs-dir", type=str, default="yolo-logs", help="Path to save logs")
    parser.add_argument("--pin-memory", type=bool, default=True, help="Pin Memory for DataLoader")
    parser.add_argument("--num-workers", type=int, default=0, help="Number of workers for DataLoader")
    parser.add_argument("--num-epochs", type=int, default=100, help="Number of training epochs")
    parser.add_argument("--optimizer", type=str, default="AdamW", help="Optimizer type")
    parser.add_argument("--learning-rate", type=float, default=5e-4, help="Learning rate for the optimizer")
    parser.add_argument("--save-frequency", type=int, default=4, help="Frequency of saving model weights")
    parser.add_argument("--max-norm", type=float, default=10.0, help="Maximum gradient norm for clipping")
    parser.add_argument("--project-name", type=str, default="YOLOv3, mask detection", help="Wandb project name")
    parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to run the training on")
    parser.add_argument("--weights-path", type=str, default="weights/darknet53.pth", help="Path to the weights")
    parser.add_argument("--seed", type=int, default=42, help="Value of the seed")
    parser.add_argument("--mixed-precision", type=str, default="fp16", choices=["fp16", "bf16", "fp8", "no"], help="Value of the mixed precision")
    parser.add_argument("--gradient-accumulation-steps", type=int, default=2, help="Value of the gradient accumulation steps")
    parser.add_argument("--log-steps", type=int, default=13, help="Number of steps between logging training images and metrics")
    parser.add_argument("--num-warmup-steps", type=int, default=400, help="Number of steps")
    return parser.parse_args()


def main() -> None:
    args = parse_args()
    set_seed(args.seed)
    accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision)
    with accelerator.main_process_first():
        logs_dir = Path(args.logs_dir)
        logs_dir.mkdir(exist_ok=True)
        wandb.init(project=args.project_name, dir=logs_dir)
    train_dataset = MaskDataset(root=args.root, train=True)
    test_dataset = MaskDataset(root=args.root, train=False)
    train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, pin_memory=args.pin_memory, num_workers=args.num_workers, collate_fn=collate_fn)
    test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=args.pin_memory, num_workers=args.num_workers, collate_fn=collate_fn)
    model = YOLOv3().to(accelerator.device)
    optimizer_class = getattr(torch.optim, args.optimizer)
    if args.weights_path:
        weights = torch.load(args.weights_path, map_location="cpu", weights_only=True)
        model.backbone.load_state_dict(weights)
    optimizer = optimizer_class(model.parameters(), lr=args.learning_rate)
    criterion = YoloLoss(class_counts=train_dataset.class_counts)
    scheduler = WarmupCosineAnnealingLR(optimizer, warmup_steps=args.num_warmup_steps//args.gradient_accumulation_steps, total_steps=args.num_epochs*len(train_loader)//args.gradient_accumulation_steps, eta_min=1e-7)

    model, optimizer, train_loader = accelerator.prepare(model, optimizer, train_loader)
    best_map = 0.0
    train_loss_ema = EMA()
    for epoch in range(1, args.num_epochs + 1):
        model.train()
        pbar = tqdm(train_loader, desc = f"Train epoch {epoch} / {args.num_epochs}")
        for images, (t_l, t_m, t_s) in pbar:
            images = images.to(accelerator.device)
            t_l = t_l.to(accelerator.device)
            t_m = t_m.to(accelerator.device)
            t_s = t_s.to(accelerator.device)
            with accelerator.accumulate(model):
                with accelerator.autocast():
                    out_l, out_m, out_s = model(images)
                    loss = criterion((out_l, out_m, out_s), (t_l, t_m, t_s))
                    accelerator.backward(loss)
                    grad_norm = None
                    if accelerator.sync_gradients:
                        grad_norm = accelerator.clip_grad_norm_(model.parameters(), args.max_norm).item()
                        optimizer.step()
                        optimizer.zero_grad()
                        scheduler.step()
                    lr = scheduler.get_last_lr()[0]
                    pbar.set_postfix({"loss": train_loss_ema(loss.item())})
                    log_data = {
                        "train/epoch": epoch,
                        "train/loss": loss.item(),
                        "train/lr": lr
                    }
                    if grad_norm is not None:
                        log_data["train/grad_norm"] = grad_norm
                    if accelerator.is_main_process:
                        wandb.log(log_data)
        accelerator.wait_for_everyone()
        model.eval()
        all_pred = [[] for _ in range(model.num_classes)]
        all_gt = [[] for _ in range(model.num_classes)]
        with torch.inference_mode():
            test_loss = 0.0
            pbar = tqdm(test_loader, desc=f"Test epoch {epoch} / {args.num_epochs}")
            for index, (images, (t_l, t_m, t_s)) in enumerate(pbar):
                images = images.to(accelerator.device)
                t_l = t_l.to(accelerator.device)
                t_m = t_m.to(accelerator.device)
                t_s = t_s.to(accelerator.device)
                out_l, out_m, out_s = model(images)
                loss = criterion((out_l, out_m, out_s), (t_l, t_m, t_s))
                test_loss += loss.item()
                results = decode_predictions_3scales(out_l, out_m, out_s, ANCHORS["large"], ANCHORS["medium"], ANCHORS["small"])
                gt_batch = decode_target_3scales(t_l, t_m, t_s, ANCHORS["large"], ANCHORS["medium"], ANCHORS["small"])
                if (index + 1) % args.log_steps == 0 and accelerator.is_main_process:
                    images_to_log = []
                    combined_image = create_combined_image(images, gt_batch, results)
                    images_to_log.append(wandb.Image(combined_image, caption=f"Combined Image (Test, Epoch {epoch})"))
                    wandb.log({"test_samples": images_to_log})
                for b_i in range(len(images)):
                    dets_b = results[b_i].detach().cpu().numpy()
                    gts_b = gt_batch[b_i].detach().cpu().numpy()
                    for db in dets_b:
                        c = int(db[5])
                        all_pred[c].append([db[0], db[1], db[2], db[3], db[4]])
                    for gb in gts_b:
                        c = int(gb[4])
                        all_gt[c].append([gb[0], gb[1], gb[2], gb[3]])
        test_loss /= len(test_loader)
        test_map = compute_map(all_pred, all_gt)
        accelerator.print(f"loss: {test_loss:.3f}, map: {test_map:.3f}")
        if accelerator.is_main_process:
            wandb.log({
                "epoch": epoch,
                "test/loss": test_loss,
                "test/mAP": test_map
            })
            if test_map > best_map:
                best_map = test_map
                accelerator.save(model.state_dict(), logs_dir / "checkpoint-best.pth")
            elif epoch % args.save_frequency == 0:
                accelerator.save(model.state_dict(), logs_dir / f"checkpoint-{epoch:09}.pth")
        accelerator.wait_for_everyone()
    accelerator.wait_for_everyone()
    wandb.finish()


if __name__ == "__main__":
    main()