Spaces:
Running
Running
import cv2 | |
import numpy as np | |
from registry import registry | |
def original(image): | |
return image | |
def dot_effect(image, dot_size: int = 10, dot_spacing: int = 2, invert: bool = False): | |
# Convert to grayscale if image is color | |
if len(image.shape) == 3: | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
else: | |
gray = image | |
# Apply adaptive thresholding to improve contrast | |
gray = cv2.adaptiveThreshold( | |
gray, | |
255, | |
cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY, | |
25, # Block size | |
5 # Constant subtracted from mean | |
) | |
height, width = gray.shape | |
canvas = np.zeros_like(gray) if not invert else np.full_like(gray, 255) | |
y_dots = range(0, height, dot_size + dot_spacing) | |
x_dots = range(0, width, dot_size + dot_spacing) | |
dot_color = 255 if not invert else 0 | |
for y in y_dots: | |
for x in x_dots: | |
region = gray[y:min(y+dot_size, height), x:min(x+dot_size, width)] | |
if region.size > 0: | |
brightness = np.mean(region) | |
# Dynamic dot sizing based on brightness | |
relative_brightness = brightness / 255.0 | |
if invert: | |
relative_brightness = 1 - relative_brightness | |
# Draw circle with size proportional to brightness | |
radius = int((dot_size/2) * relative_brightness) | |
if radius > 0: | |
cv2.circle(canvas, | |
(x + dot_size//2, y + dot_size//2), | |
radius, | |
(dot_color), | |
-1) | |
return canvas | |