import cv2 import numpy as np from registry import registry @registry.register("Original") def original(image): return image @registry.register("Dot Effect", defaults={ "dot_size": 10, "dot_spacing": 2, "invert": False, }, min_vals={ "dot_size": 1, "dot_spacing": 1, }, max_vals={ "dot_size": 20, "dot_spacing": 10, }, step_vals={ "dot_size": 1, "dot_spacing": 1, }) def dot_effect(image, dot_size: int = 10, dot_spacing: int = 2, invert: bool = False): # Convert to grayscale if image is color if len(image.shape) == 3: gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: gray = image # Apply adaptive thresholding to improve contrast gray = cv2.adaptiveThreshold( gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 25, # Block size 5 # Constant subtracted from mean ) height, width = gray.shape canvas = np.zeros_like(gray) if not invert else np.full_like(gray, 255) y_dots = range(0, height, dot_size + dot_spacing) x_dots = range(0, width, dot_size + dot_spacing) dot_color = 255 if not invert else 0 for y in y_dots: for x in x_dots: region = gray[y:min(y+dot_size, height), x:min(x+dot_size, width)] if region.size > 0: brightness = np.mean(region) # Dynamic dot sizing based on brightness relative_brightness = brightness / 255.0 if invert: relative_brightness = 1 - relative_brightness # Draw circle with size proportional to brightness radius = int((dot_size/2) * relative_brightness) if radius > 0: cv2.circle(canvas, (x + dot_size//2, y + dot_size//2), radius, (dot_color), -1) return canvas