Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import pandas as pd | |
import numpy as np | |
import plotly.express as px | |
from plotly.graph_objs import Figure | |
from src.leaderboard.filter_models import FLAGGED_MODELS | |
from src.display.utils import human_baseline_row as HUMAN_BASELINE, AutoEvalColumn, Tasks, Task, BENCHMARK_COLS, external_eval_results, NUMERIC_INTERVALS | |
from src.leaderboard.read_evals import EvalResult | |
import copy | |
def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame: | |
""" | |
Generates a DataFrame containing the maximum scores until each date. | |
:param results_df: A DataFrame containing result information including metric scores and dates. | |
:return: A new DataFrame containing the maximum scores until each date for every metric. | |
""" | |
# Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it | |
#create dataframe with EvalResult dataclass columns, even if raw_data is empty | |
raw_data = copy.deepcopy(raw_data) | |
for external_row in external_eval_results: | |
raw_data.append(EvalResult(**external_row)) | |
results_df = pd.DataFrame(raw_data, columns=EvalResult.__dataclass_fields__.keys()) | |
#results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True) | |
#convert date to datetime | |
results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True) | |
#convert to simple date string 2025-04-26 | |
results_df["date"] = results_df["date"].dt.strftime("%Y-%m-%d") | |
results_df.sort_values(by="date", inplace=True) | |
# Step 2: Initialize the scores dictionary | |
scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]} | |
# Step 3: Iterate over the rows of the DataFrame and update the scores dictionary | |
for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]: | |
current_max = 0 | |
last_date = "" | |
column = task.col_name | |
for _, row in results_df.iterrows(): | |
current_model = row["full_model"] | |
# We ignore models that are flagged/no longer on the hub/not finished | |
to_ignore = not row["still_on_hub"] or row["flagged"] or current_model in FLAGGED_MODELS or row["status"] != "FINISHED" | |
if to_ignore: | |
continue | |
current_date = row["date"] | |
if task.benchmark == "Average": | |
current_score = np.mean(list(row["results"].values())) | |
else: | |
if task.benchmark not in row["results"]: | |
continue | |
current_score = row["results"][task.benchmark] | |
if current_score > current_max: | |
if current_date == last_date and len(scores[column]) > 0: | |
scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score} | |
else: | |
scores[column].append({"model": current_model, "date": current_date, "score": current_score}) | |
current_max = current_score | |
last_date = current_date | |
# Step 4: Return all dictionaries as DataFrames | |
return {k: pd.DataFrame(v, columns=["model", "date", "score"]) for k, v in scores.items()} | |
def create_plot_df(scores_df: dict[str: pd.DataFrame]) -> pd.DataFrame: | |
""" | |
Transforms the scores DataFrame into a new format suitable for plotting. | |
:param scores_df: A DataFrame containing metric scores and dates. | |
:return: A new DataFrame reshaped for plotting purposes. | |
""" | |
# Initialize the list to store DataFrames | |
dfs = [] | |
# Iterate over the cols and create a new DataFrame for each column | |
for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]: | |
d = scores_df[col].reset_index(drop=True) | |
d["task"] = col | |
dfs.append(d) | |
# Concatenate all the created DataFrames | |
concat_df = pd.concat(dfs, ignore_index=True) | |
# Sort values by 'date' | |
concat_df.sort_values(by="date", inplace=True) | |
concat_df.reset_index(drop=True, inplace=True) | |
return concat_df | |
def create_metric_plot_obj( | |
df: pd.DataFrame, metrics: list[str], title: str | |
) -> Figure: | |
""" | |
Create a Plotly figure object with lines representing different metrics | |
and horizontal dotted lines representing human baselines. | |
:param df: The DataFrame containing the metric values, names, and dates. | |
:param metrics: A list of strings representing the names of the metrics | |
to be included in the plot. | |
:param title: A string representing the title of the plot. | |
:return: A Plotly figure object with lines representing metrics and | |
horizontal dotted lines representing human baselines. | |
""" | |
# Filter the DataFrame based on the specified metrics | |
df = df[df["task"].isin(metrics)] | |
# Filter the human baselines based on the specified metrics | |
filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics if v is not None} | |
# Create a line figure using plotly express with specified markers and custom data | |
fig = px.line( | |
df, | |
x="date", | |
y="score", | |
color="task", | |
markers=True, | |
custom_data=["task", "score", "model"], | |
title=title, | |
) | |
# Update hovertemplate for better hover interaction experience | |
fig.update_traces( | |
hovertemplate="<br>".join( | |
[ | |
"Model Name: %{customdata[2]}", | |
"Metric Name: %{customdata[0]}", | |
"Date: %{x}", | |
"Metric Value: %{y}", | |
] | |
) | |
) | |
# Update the range of the y-axis | |
#fig.update_layout(yaxis_range=[0, 100]) | |
# Create a dictionary to hold the color mapping for each metric | |
metric_color_mapping = {} | |
# Map each metric name to its color in the figure | |
for trace in fig.data: | |
metric_color_mapping[trace.name] = trace.line.color | |
# Iterate over filtered human baselines and add horizontal lines to the figure | |
for metric, value in filtered_human_baselines.items(): | |
color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found | |
location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position | |
# Add horizontal line with matched color and positioned annotation | |
fig.add_hline( | |
y=value, | |
line_dash="dot", | |
annotation_text=f"{metric} human baseline", | |
annotation_position=location, | |
annotation_font_size=10, | |
annotation_font_color=color, | |
line_color=color, | |
) | |
return fig | |
def create_lat_score_mem_plot_obj(leaderboard_df): | |
copy_df = leaderboard_df.copy() | |
copy_df = copy_df[~(copy_df[AutoEvalColumn.dummy.name].isin(["baseline", "human_baseline"]))] | |
# plot | |
SCORE_MEMORY_LATENCY_DATA = [ | |
AutoEvalColumn.dummy.name, | |
AutoEvalColumn.average.name, | |
AutoEvalColumn.params.name, | |
AutoEvalColumn.architecture.name, | |
"Evaluation Time (min)" | |
] | |
copy_df["LLM Average Score"] = copy_df[AutoEvalColumn.average.name] | |
copy_df["Evaluation Time (min)"] = copy_df[AutoEvalColumn.eval_time.name] / 60 | |
#copy_df["size"] = copy_df[AutoEvalColumn.params.name] | |
copy_df["size"] = copy_df[AutoEvalColumn.params.name].apply(lambda x: 0.5 if 0 <= x < 0.8 else x) | |
copy_df["size"] = copy_df["size"].apply(lambda x: 0.8 if 0.8 <= x < 2 else x) | |
copy_df["size"] = copy_df["size"].apply(lambda x: 1.5 if 2 <= x < 5 else x) | |
copy_df["size"] = copy_df["size"].apply(lambda x: 2.0 if 5 <= x < 10 else x) | |
copy_df["size"] = copy_df["size"].apply(lambda x: 3.0 if 10 <= x < 35 else x) | |
copy_df["size"] = copy_df["size"].apply(lambda x: 4.0 if 35 <= x < 60 else x) | |
copy_df["size"] = copy_df["size"].apply(lambda x: 6.0 if 60 <= x < 90 else x) | |
copy_df["size"] = copy_df["size"].apply(lambda x: 8.0 if x >= 90 else x) | |
fig = px.scatter( | |
copy_df, | |
x="Evaluation Time (min)", | |
y="LLM Average Score", | |
size="size", | |
color=AutoEvalColumn.architecture.name, | |
custom_data=SCORE_MEMORY_LATENCY_DATA, | |
color_discrete_sequence=px.colors.qualitative.Light24, | |
log_x=True | |
) | |
fig.update_traces( | |
hovertemplate="<br>".join( | |
[f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(SCORE_MEMORY_LATENCY_DATA)] | |
) | |
) | |
fig.update_layout( | |
title={ | |
"text": "Eval Time vs. Score vs. #Params", | |
"y": 0.95, | |
"x": 0.5, | |
"xanchor": "center", | |
"yanchor": "top", | |
}, | |
xaxis_title="Time To Evaluate (min)", | |
yaxis_title="LLM Average Score", | |
legend_title="LLM Architecture", | |
width=1200, | |
height=600, | |
) | |
return fig | |
def create_top_n_models_comparison_plot(leaderboard_df: pd.DataFrame, top_n: int = 5, size_filter: str = None) -> Figure: | |
""" | |
Creates a grouped bar chart comparing the performance of the top N models across all metrics. | |
:param leaderboard_df: DataFrame containing the leaderboard data. | |
:param top_n: The number of top models to include in the comparison (default is 5). | |
:param size_filter: If provided, only include models of this specific size category. | |
:return: A Plotly figure object representing the comparison plot. | |
""" | |
# Ensure BENCHMARK_COLS contains the correct metric column names | |
metric_cols = BENCHMARK_COLS | |
# Filter out non-model rows (like baseline or human) and select relevant columns | |
models_df = leaderboard_df[~leaderboard_df[AutoEvalColumn.dummy.name].isin(["baseline", "human_baseline"])].copy() | |
# Add size group information to the DataFrame | |
models_df['size_group'] = models_df[AutoEvalColumn.params.name].apply( | |
lambda x: next((k for k, v in NUMERIC_INTERVALS.items() if x in v), '?') | |
) | |
# Filter by size category if specified | |
if size_filter and size_filter != 'All Sizes': | |
models_df = models_df[models_df['size_group'] == size_filter] | |
if models_df.empty: | |
# If no models match the size filter, return an empty figure with a message | |
fig = px.bar( | |
x=["No Data"], | |
y=[0], | |
title=f"No models found in the {size_filter} size category" | |
) | |
fig.update_layout( | |
xaxis_title="", | |
yaxis_title="", | |
showlegend=False | |
) | |
return fig | |
# Sort models by average score and select the top N | |
top_models_df = models_df.nlargest(top_n, AutoEvalColumn.average.name) | |
# Select only the necessary columns: model name and metric scores | |
plot_data = top_models_df[[AutoEvalColumn.dummy.name] + metric_cols] | |
# Melt the DataFrame to long format suitable for plotting | |
# 'id_vars' specifies the column(s) to keep as identifiers | |
# 'value_vars' specifies the columns to unpivot | |
# 'var_name' is the name for the new column containing the original column names (metrics) | |
# 'value_name' is the name for the new column containing the values (scores) | |
melted_df = pd.melt( | |
plot_data, | |
id_vars=[AutoEvalColumn.dummy.name], | |
value_vars=metric_cols, | |
var_name="Metric", | |
value_name="Score", | |
) | |
# Validate and cap scores to ensure they're within a reasonable range (0-100) | |
melted_df['Score'] = melted_df['Score'].apply(lambda x: min(max(x, 0), 100)) | |
# Create the grouped bar chart | |
fig = px.bar( | |
melted_df, | |
x="Metric", | |
y="Score", | |
color=AutoEvalColumn.dummy.name, # Group bars by model name | |
barmode="group", # Display bars side-by-side for each metric | |
title=f"Top {top_n} Models Comparison Across Metrics", | |
labels={AutoEvalColumn.dummy.name: "Model"}, # Rename legend title | |
custom_data=[AutoEvalColumn.dummy.name, "Metric", "Score"], # Data for hover | |
range_y=[0, 100], # Force y-axis range to be 0-100 | |
) | |
# Update hovertemplate | |
fig.update_traces( | |
hovertemplate="<br>".join( | |
[ | |
"Model: %{customdata[0]}", | |
"Metric: %{customdata[1]}", | |
"Score: %{customdata[2]:.2f}", # Format score to 2 decimal places | |
"<extra></extra>", # Remove the default trace info | |
] | |
) | |
) | |
# Create title with size filter information if applicable | |
title_text = f"Top {top_n} Models Comparison Across Metrics" | |
if size_filter and size_filter != 'All Sizes': | |
title_text += f" ({size_filter} Models)" | |
# Calculate appropriate y-axis range based on the data | |
min_score = melted_df['Score'].min() | |
max_score = melted_df['Score'].max() | |
# Set y-axis minimum (start at 0 unless all scores are high) | |
y_min = 40 if min_score > 50 else 0 | |
# Set y-axis maximum (ensure there's room for annotations) | |
y_max = 100 if max_score < 95 else 105 | |
# Optional: Adjust layout for better readability | |
fig.update_layout( | |
title={ | |
"text": title_text, | |
"y": 0.95, | |
"x": 0.5, | |
"xanchor": "center", | |
"yanchor": "top", | |
}, | |
xaxis_title="Metric", | |
yaxis_title="Score (%)", | |
legend_title="Model", | |
yaxis=dict( | |
range=[y_min, y_max], # Set y-axis range dynamically | |
constrain="domain", # Constrain the axis to the domain | |
constraintoward="top" # Constrain toward the top | |
), | |
width=1600, | |
height=450, | |
) | |
# Define shape icons for each model | |
shape_icons = { | |
0: "triangle-up", # First model gets triangle | |
1: "square", # Second model gets square | |
2: "circle", # Third model gets circle | |
3: "diamond", # Fourth model gets diamond | |
4: "star", # Fifth model gets star | |
5: "pentagon", # Sixth model gets pentagon | |
6: "hexagon", # Seventh model gets hexagon | |
7: "cross", # Eighth model gets cross | |
8: "x", # Ninth model gets x | |
9: "hourglass", # Tenth model gets hourglass | |
} | |
# Get the average score for each model | |
model_averages = {} | |
for model in top_models_df[AutoEvalColumn.dummy.name].unique(): | |
try: | |
model_averages[model] = top_models_df.loc[top_models_df[AutoEvalColumn.dummy.name] == model, AutoEvalColumn.average.name].values[0] | |
except (IndexError, KeyError): | |
# If average score is not available, use None | |
model_averages[model] = None | |
# Add shapes to the legend and annotations with icons for each bar | |
for i, bar in enumerate(fig.data): | |
model_name = bar.name | |
model_index = list(top_models_df[AutoEvalColumn.dummy.name].unique()).index(model_name) % len(shape_icons) | |
icon_shape = shape_icons[model_index] | |
# Update the name in the legend to include the shape symbol | |
shape_symbol = get_symbol_for_shape(icon_shape) | |
fig.data[i].name = f"{shape_symbol} {model_name}" | |
# For each bar in this trace | |
for j, (x, y) in enumerate(zip(bar.x, bar.y)): | |
# Use the actual bar score instead of the average | |
score_text = f"<b>{y:.1f}</b>" | |
# Calculate the exact position for the annotation | |
# Plotly's grouped bar charts position bars at specific offsets | |
# We need to match these offsets exactly | |
num_models = len(top_models_df[AutoEvalColumn.dummy.name].unique()) | |
# The total width allocated for all bars in a group | |
total_group_width = 0.8 | |
# Width of each individual bar | |
bar_width = total_group_width / num_models | |
# Calculate the offset for this specific bar within its group | |
# i represents which model in the group (0 is the first model, etc.) | |
# Center of the group is at x, so we need to adjust from there | |
offset = (i - (num_models-1)/2) * bar_width | |
# Add score text directly above its bar | |
fig.add_annotation( | |
x=x, | |
y=y + 2, # Position slightly above the bar | |
text=score_text, # Display the actual bar score | |
showarrow=False, | |
font=dict( | |
size=10, | |
color=bar.marker.color # Match the bar color | |
), | |
opacity=0.9, | |
xshift=offset * 130 # Adjust the multiplier to better center the annotation | |
) | |
# Add the shape icon above the score | |
fig.add_annotation( | |
x=x, | |
y=y - 3, # Position above the score text | |
text=get_symbol_for_shape(icon_shape), # Convert shape name to symbol | |
showarrow=False, | |
font=dict( | |
size=14, | |
color="black" # Match the bar color | |
), | |
opacity=0.9, | |
xshift=offset * 130 # Adjust the multiplier to better center the annotation | |
) | |
return fig | |
def get_symbol_for_shape(shape_name): | |
"""Convert shape name to a symbol character that can be used in annotations.""" | |
symbols = { | |
"triangle-up": "β²", | |
"square": "β ", | |
"circle": "β", | |
"diamond": "β", | |
"star": "β ", | |
"pentagon": "β¬", | |
"hexagon": "β¬’", | |
"cross": "β", | |
"x": "β", | |
"hourglass": "β§" | |
} | |
return symbols.get(shape_name, "β") # Default to circle if shape not found | |