import pandas as pd import numpy as np import plotly.express as px from plotly.graph_objs import Figure from src.leaderboard.filter_models import FLAGGED_MODELS from src.display.utils import human_baseline_row as HUMAN_BASELINE, AutoEvalColumn, Tasks, Task, BENCHMARK_COLS, external_eval_results, NUMERIC_INTERVALS from src.leaderboard.read_evals import EvalResult import copy def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame: """ Generates a DataFrame containing the maximum scores until each date. :param results_df: A DataFrame containing result information including metric scores and dates. :return: A new DataFrame containing the maximum scores until each date for every metric. """ # Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it #create dataframe with EvalResult dataclass columns, even if raw_data is empty raw_data = copy.deepcopy(raw_data) for external_row in external_eval_results: raw_data.append(EvalResult(**external_row)) results_df = pd.DataFrame(raw_data, columns=EvalResult.__dataclass_fields__.keys()) #results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True) #convert date to datetime results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True) #convert to simple date string 2025-04-26 results_df["date"] = results_df["date"].dt.strftime("%Y-%m-%d") results_df.sort_values(by="date", inplace=True) # Step 2: Initialize the scores dictionary scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]} # Step 3: Iterate over the rows of the DataFrame and update the scores dictionary for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]: current_max = 0 last_date = "" column = task.col_name for _, row in results_df.iterrows(): current_model = row["full_model"] # We ignore models that are flagged/no longer on the hub/not finished to_ignore = not row["still_on_hub"] or row["flagged"] or current_model in FLAGGED_MODELS or row["status"] != "FINISHED" if to_ignore: continue current_date = row["date"] if task.benchmark == "Average": current_score = np.mean(list(row["results"].values())) else: if task.benchmark not in row["results"]: continue current_score = row["results"][task.benchmark] if current_score > current_max: if current_date == last_date and len(scores[column]) > 0: scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score} else: scores[column].append({"model": current_model, "date": current_date, "score": current_score}) current_max = current_score last_date = current_date # Step 4: Return all dictionaries as DataFrames return {k: pd.DataFrame(v, columns=["model", "date", "score"]) for k, v in scores.items()} def create_plot_df(scores_df: dict[str: pd.DataFrame]) -> pd.DataFrame: """ Transforms the scores DataFrame into a new format suitable for plotting. :param scores_df: A DataFrame containing metric scores and dates. :return: A new DataFrame reshaped for plotting purposes. """ # Initialize the list to store DataFrames dfs = [] # Iterate over the cols and create a new DataFrame for each column for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]: d = scores_df[col].reset_index(drop=True) d["task"] = col dfs.append(d) # Concatenate all the created DataFrames concat_df = pd.concat(dfs, ignore_index=True) # Sort values by 'date' concat_df.sort_values(by="date", inplace=True) concat_df.reset_index(drop=True, inplace=True) return concat_df def create_metric_plot_obj( df: pd.DataFrame, metrics: list[str], title: str ) -> Figure: """ Create a Plotly figure object with lines representing different metrics and horizontal dotted lines representing human baselines. :param df: The DataFrame containing the metric values, names, and dates. :param metrics: A list of strings representing the names of the metrics to be included in the plot. :param title: A string representing the title of the plot. :return: A Plotly figure object with lines representing metrics and horizontal dotted lines representing human baselines. """ # Filter the DataFrame based on the specified metrics df = df[df["task"].isin(metrics)] # Filter the human baselines based on the specified metrics filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics if v is not None} # Create a line figure using plotly express with specified markers and custom data fig = px.line( df, x="date", y="score", color="task", markers=True, custom_data=["task", "score", "model"], title=title, ) # Update hovertemplate for better hover interaction experience fig.update_traces( hovertemplate="
".join( [ "Model Name: %{customdata[2]}", "Metric Name: %{customdata[0]}", "Date: %{x}", "Metric Value: %{y}", ] ) ) # Update the range of the y-axis #fig.update_layout(yaxis_range=[0, 100]) # Create a dictionary to hold the color mapping for each metric metric_color_mapping = {} # Map each metric name to its color in the figure for trace in fig.data: metric_color_mapping[trace.name] = trace.line.color # Iterate over filtered human baselines and add horizontal lines to the figure for metric, value in filtered_human_baselines.items(): color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position # Add horizontal line with matched color and positioned annotation fig.add_hline( y=value, line_dash="dot", annotation_text=f"{metric} human baseline", annotation_position=location, annotation_font_size=10, annotation_font_color=color, line_color=color, ) return fig def create_lat_score_mem_plot_obj(leaderboard_df): copy_df = leaderboard_df.copy() copy_df = copy_df[~(copy_df[AutoEvalColumn.dummy.name].isin(["baseline", "human_baseline"]))] # plot SCORE_MEMORY_LATENCY_DATA = [ AutoEvalColumn.dummy.name, AutoEvalColumn.average.name, AutoEvalColumn.params.name, AutoEvalColumn.architecture.name, "Evaluation Time (min)" ] copy_df["LLM Average Score"] = copy_df[AutoEvalColumn.average.name] copy_df["Evaluation Time (min)"] = copy_df[AutoEvalColumn.eval_time.name] / 60 #copy_df["size"] = copy_df[AutoEvalColumn.params.name] copy_df["size"] = copy_df[AutoEvalColumn.params.name].apply(lambda x: 0.5 if 0 <= x < 0.8 else x) copy_df["size"] = copy_df["size"].apply(lambda x: 0.8 if 0.8 <= x < 2 else x) copy_df["size"] = copy_df["size"].apply(lambda x: 1.5 if 2 <= x < 5 else x) copy_df["size"] = copy_df["size"].apply(lambda x: 2.0 if 5 <= x < 10 else x) copy_df["size"] = copy_df["size"].apply(lambda x: 3.0 if 10 <= x < 35 else x) copy_df["size"] = copy_df["size"].apply(lambda x: 4.0 if 35 <= x < 60 else x) copy_df["size"] = copy_df["size"].apply(lambda x: 6.0 if 60 <= x < 90 else x) copy_df["size"] = copy_df["size"].apply(lambda x: 8.0 if x >= 90 else x) fig = px.scatter( copy_df, x="Evaluation Time (min)", y="LLM Average Score", size="size", color=AutoEvalColumn.architecture.name, custom_data=SCORE_MEMORY_LATENCY_DATA, color_discrete_sequence=px.colors.qualitative.Light24, log_x=True ) fig.update_traces( hovertemplate="
".join( [f"{column}: %{{customdata[{i}]}}" for i, column in enumerate(SCORE_MEMORY_LATENCY_DATA)] ) ) fig.update_layout( title={ "text": "Eval Time vs. Score vs. #Params", "y": 0.95, "x": 0.5, "xanchor": "center", "yanchor": "top", }, xaxis_title="Time To Evaluate (min)", yaxis_title="LLM Average Score", legend_title="LLM Architecture", width=1200, height=600, ) return fig def create_top_n_models_comparison_plot(leaderboard_df: pd.DataFrame, top_n: int = 5, size_filter: str = None) -> Figure: """ Creates a grouped bar chart comparing the performance of the top N models across all metrics. :param leaderboard_df: DataFrame containing the leaderboard data. :param top_n: The number of top models to include in the comparison (default is 5). :param size_filter: If provided, only include models of this specific size category. :return: A Plotly figure object representing the comparison plot. """ # Ensure BENCHMARK_COLS contains the correct metric column names metric_cols = BENCHMARK_COLS # Filter out non-model rows (like baseline or human) and select relevant columns models_df = leaderboard_df[~leaderboard_df[AutoEvalColumn.dummy.name].isin(["baseline", "human_baseline"])].copy() # Add size group information to the DataFrame models_df['size_group'] = models_df[AutoEvalColumn.params.name].apply( lambda x: next((k for k, v in NUMERIC_INTERVALS.items() if x in v), '?') ) # Filter by size category if specified if size_filter and size_filter != 'All Sizes': models_df = models_df[models_df['size_group'] == size_filter] if models_df.empty: # If no models match the size filter, return an empty figure with a message fig = px.bar( x=["No Data"], y=[0], title=f"No models found in the {size_filter} size category" ) fig.update_layout( xaxis_title="", yaxis_title="", showlegend=False ) return fig # Sort models by average score and select the top N top_models_df = models_df.nlargest(top_n, AutoEvalColumn.average.name) # Select only the necessary columns: model name and metric scores plot_data = top_models_df[[AutoEvalColumn.dummy.name] + metric_cols] # Melt the DataFrame to long format suitable for plotting # 'id_vars' specifies the column(s) to keep as identifiers # 'value_vars' specifies the columns to unpivot # 'var_name' is the name for the new column containing the original column names (metrics) # 'value_name' is the name for the new column containing the values (scores) melted_df = pd.melt( plot_data, id_vars=[AutoEvalColumn.dummy.name], value_vars=metric_cols, var_name="Metric", value_name="Score", ) # Validate and cap scores to ensure they're within a reasonable range (0-100) melted_df['Score'] = melted_df['Score'].apply(lambda x: min(max(x, 0), 100)) # Create the grouped bar chart fig = px.bar( melted_df, x="Metric", y="Score", color=AutoEvalColumn.dummy.name, # Group bars by model name barmode="group", # Display bars side-by-side for each metric title=f"Top {top_n} Models Comparison Across Metrics", labels={AutoEvalColumn.dummy.name: "Model"}, # Rename legend title custom_data=[AutoEvalColumn.dummy.name, "Metric", "Score"], # Data for hover range_y=[0, 100], # Force y-axis range to be 0-100 ) # Update hovertemplate fig.update_traces( hovertemplate="
".join( [ "Model: %{customdata[0]}", "Metric: %{customdata[1]}", "Score: %{customdata[2]:.2f}", # Format score to 2 decimal places "", # Remove the default trace info ] ) ) # Create title with size filter information if applicable title_text = f"Top {top_n} Models Comparison Across Metrics" if size_filter and size_filter != 'All Sizes': title_text += f" ({size_filter} Models)" # Calculate appropriate y-axis range based on the data min_score = melted_df['Score'].min() max_score = melted_df['Score'].max() # Set y-axis minimum (start at 0 unless all scores are high) y_min = 40 if min_score > 50 else 0 # Set y-axis maximum (ensure there's room for annotations) y_max = 100 if max_score < 95 else 105 # Optional: Adjust layout for better readability fig.update_layout( title={ "text": title_text, "y": 0.95, "x": 0.5, "xanchor": "center", "yanchor": "top", }, xaxis_title="Metric", yaxis_title="Score (%)", legend_title="Model", yaxis=dict( range=[y_min, y_max], # Set y-axis range dynamically constrain="domain", # Constrain the axis to the domain constraintoward="top" # Constrain toward the top ), width=1600, height=450, ) # Define shape icons for each model shape_icons = { 0: "triangle-up", # First model gets triangle 1: "square", # Second model gets square 2: "circle", # Third model gets circle 3: "diamond", # Fourth model gets diamond 4: "star", # Fifth model gets star 5: "pentagon", # Sixth model gets pentagon 6: "hexagon", # Seventh model gets hexagon 7: "cross", # Eighth model gets cross 8: "x", # Ninth model gets x 9: "hourglass", # Tenth model gets hourglass } # Get the average score for each model model_averages = {} for model in top_models_df[AutoEvalColumn.dummy.name].unique(): try: model_averages[model] = top_models_df.loc[top_models_df[AutoEvalColumn.dummy.name] == model, AutoEvalColumn.average.name].values[0] except (IndexError, KeyError): # If average score is not available, use None model_averages[model] = None # Add shapes to the legend and annotations with icons for each bar for i, bar in enumerate(fig.data): model_name = bar.name model_index = list(top_models_df[AutoEvalColumn.dummy.name].unique()).index(model_name) % len(shape_icons) icon_shape = shape_icons[model_index] # Update the name in the legend to include the shape symbol shape_symbol = get_symbol_for_shape(icon_shape) fig.data[i].name = f"{shape_symbol} {model_name}" # For each bar in this trace for j, (x, y) in enumerate(zip(bar.x, bar.y)): # Use the actual bar score instead of the average score_text = f"{y:.1f}" # Calculate the exact position for the annotation # Plotly's grouped bar charts position bars at specific offsets # We need to match these offsets exactly num_models = len(top_models_df[AutoEvalColumn.dummy.name].unique()) # The total width allocated for all bars in a group total_group_width = 0.8 # Width of each individual bar bar_width = total_group_width / num_models # Calculate the offset for this specific bar within its group # i represents which model in the group (0 is the first model, etc.) # Center of the group is at x, so we need to adjust from there offset = (i - (num_models-1)/2) * bar_width # Add score text directly above its bar fig.add_annotation( x=x, y=y + 2, # Position slightly above the bar text=score_text, # Display the actual bar score showarrow=False, font=dict( size=10, color=bar.marker.color # Match the bar color ), opacity=0.9, xshift=offset * 130 # Adjust the multiplier to better center the annotation ) # Add the shape icon above the score fig.add_annotation( x=x, y=y - 3, # Position above the score text text=get_symbol_for_shape(icon_shape), # Convert shape name to symbol showarrow=False, font=dict( size=14, color="black" # Match the bar color ), opacity=0.9, xshift=offset * 130 # Adjust the multiplier to better center the annotation ) return fig def get_symbol_for_shape(shape_name): """Convert shape name to a symbol character that can be used in annotations.""" symbols = { "triangle-up": "▲", "square": "■", "circle": "●", "diamond": "◆", "star": "★", "pentagon": "⬟", "hexagon": "⬢", "cross": "✚", "x": "✖", "hourglass": "⧗" } return symbols.get(shape_name, "●") # Default to circle if shape not found