duongve's picture
Upload 24 files
7ef93e7 verified
import importlib
import inspect
import math
from pathlib import Path
import re
from collections import defaultdict
from typing import List, Optional, Union
import cv2
import time
import k_diffusion
import numpy as np
import PIL
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from .external_k_diffusion import CompVisDenoiser, CompVisVDenoiser
from .prompt_parser import FrozenCLIPEmbedderWithCustomWords
from torch import einsum
from torch.autograd.function import Function
from diffusers import DiffusionPipeline
from diffusers.utils import PIL_INTERPOLATION, is_accelerate_available
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor,is_compiled_module,is_torch_version
from diffusers.image_processor import VaeImageProcessor,PipelineImageInput
from safetensors.torch import load_file
from diffusers import ControlNetModel
from PIL import Image
import torchvision.transforms as transforms
from typing import Any, Callable, Dict, List, Optional, Union
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, LMSDiscreteScheduler
from .u_net_condition_modify import UNet2DConditionModel
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.models import AutoencoderKL, ImageProjection, MultiAdapter, T2IAdapter
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
PIL_INTERPOLATION,
USE_PEFT_BACKEND,
BaseOutput,
deprecate,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from packaging import version
from diffusers.configuration_utils import FrozenDict
def _preprocess_adapter_image(image, height, width):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
image = [np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])) for i in image]
image = [
i[None, ..., None] if i.ndim == 2 else i[None, ...] for i in image
] # expand [h, w] or [h, w, c] to [b, h, w, c]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
if image[0].ndim == 3:
image = torch.stack(image, dim=0)
elif image[0].ndim == 4:
image = torch.cat(image, dim=0)
else:
raise ValueError(
f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}"
)
return image
#t2i_adapter setup
def setup_model_t2i_adapter(class_name,adapter = None):
if isinstance(adapter, (list, tuple)):
adapter = MultiAdapter(adapter)
class_name.adapter = adapter
def preprocessing_t2i_adapter(class_name,image,width,height,adapter_conditioning_scale,num_images_per_prompt = 1):
if isinstance(class_name.adapter, MultiAdapter):
adapter_input = []
for one_image in image:
one_image = _preprocess_adapter_image(one_image, height, width)
one_image = one_image.to(device=class_name.device, dtype=class_name.adapter.dtype)
adapter_input.append(one_image)
else:
adapter_input = _preprocess_adapter_image(image, height, width)
adapter_input = adapter_input.to(device=class_name.device, dtype=class_name.adapter.dtype)
if isinstance(class_name.adapter, MultiAdapter):
adapter_state = class_name.adapter(adapter_input, adapter_conditioning_scale)
for k, v in enumerate(adapter_state):
adapter_state[k] = v
else:
adapter_state = class_name.adapter(adapter_input)
for k, v in enumerate(adapter_state):
adapter_state[k] = v * adapter_conditioning_scale
if num_images_per_prompt > 1:
for k, v in enumerate(adapter_state):
adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1)
if class_name.do_classifier_free_guidance:
for k, v in enumerate(adapter_state):
adapter_state[k] = torch.cat([v] * 2, dim=0)
return adapter_state
def default_height_width(class_name, height, width, image):
# NOTE: It is possible that a list of images have different
# dimensions for each image, so just checking the first image
# is not _exactly_ correct, but it is simple.
while isinstance(image, list):
image = image[0]
if height is None:
if isinstance(image, PIL.Image.Image):
height = image.height
elif isinstance(image, torch.Tensor):
height = image.shape[-2]
# round down to nearest multiple of `self.adapter.downscale_factor`
height = (height // class_name.adapter.downscale_factor) * class_name.adapter.downscale_factor
if width is None:
if isinstance(image, PIL.Image.Image):
width = image.width
elif isinstance(image, torch.Tensor):
width = image.shape[-1]
# round down to nearest multiple of `self.adapter.downscale_factor`
width = (width // class_name.adapter.downscale_factor) * class_name.adapter.downscale_factor
return height, width