File size: 5,869 Bytes
7ef93e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import importlib
import inspect
import math
from pathlib import Path
import re
from collections import defaultdict
from typing import List, Optional, Union
import cv2
import time
import k_diffusion
import numpy as np
import PIL
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from .external_k_diffusion import CompVisDenoiser, CompVisVDenoiser
from .prompt_parser import FrozenCLIPEmbedderWithCustomWords
from torch import einsum
from torch.autograd.function import Function

from diffusers import DiffusionPipeline
from diffusers.utils import PIL_INTERPOLATION, is_accelerate_available
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor,is_compiled_module,is_torch_version
from diffusers.image_processor import VaeImageProcessor,PipelineImageInput
from safetensors.torch import load_file
from diffusers import ControlNetModel
from PIL import Image
import torchvision.transforms as transforms
from typing import Any, Callable, Dict, List, Optional, Union
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, LMSDiscreteScheduler
from .u_net_condition_modify import UNet2DConditionModel
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.models import AutoencoderKL, ImageProjection, MultiAdapter, T2IAdapter
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    PIL_INTERPOLATION,
    USE_PEFT_BACKEND,
    BaseOutput,
    deprecate,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from  diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from packaging import version
from diffusers.configuration_utils import FrozenDict

def _preprocess_adapter_image(image, height, width):
    if isinstance(image, torch.Tensor):
        return image
    elif isinstance(image, PIL.Image.Image):
        image = [image]

    if isinstance(image[0], PIL.Image.Image):
        image = [np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])) for i in image]
        image = [
            i[None, ..., None] if i.ndim == 2 else i[None, ...] for i in image
        ]  # expand [h, w] or [h, w, c] to [b, h, w, c]
        image = np.concatenate(image, axis=0)
        image = np.array(image).astype(np.float32) / 255.0
        image = image.transpose(0, 3, 1, 2)
        image = torch.from_numpy(image)
    elif isinstance(image[0], torch.Tensor):
        if image[0].ndim == 3:
            image = torch.stack(image, dim=0)
        elif image[0].ndim == 4:
            image = torch.cat(image, dim=0)
        else:
            raise ValueError(
                f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}"
            )
    return image

#t2i_adapter setup
def setup_model_t2i_adapter(class_name,adapter = None):
    if isinstance(adapter, (list, tuple)):
        adapter = MultiAdapter(adapter)
    class_name.adapter = adapter



def preprocessing_t2i_adapter(class_name,image,width,height,adapter_conditioning_scale,num_images_per_prompt = 1):
    if isinstance(class_name.adapter, MultiAdapter):
        adapter_input = []
        for one_image in image:
            one_image = _preprocess_adapter_image(one_image, height, width)
            one_image = one_image.to(device=class_name.device, dtype=class_name.adapter.dtype)
            adapter_input.append(one_image)
    else:
        adapter_input = _preprocess_adapter_image(image, height, width)
        adapter_input = adapter_input.to(device=class_name.device, dtype=class_name.adapter.dtype)

    if isinstance(class_name.adapter, MultiAdapter):
        adapter_state = class_name.adapter(adapter_input, adapter_conditioning_scale)
        for k, v in enumerate(adapter_state):
            adapter_state[k] = v
    else:
        adapter_state = class_name.adapter(adapter_input)
        for k, v in enumerate(adapter_state):
            adapter_state[k] = v * adapter_conditioning_scale


    if num_images_per_prompt > 1:
        for k, v in enumerate(adapter_state):
            adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1)
    if class_name.do_classifier_free_guidance:
        for k, v in enumerate(adapter_state):
            adapter_state[k] = torch.cat([v] * 2, dim=0)
    return adapter_state


def default_height_width(class_name, height, width, image):
    # NOTE: It is possible that a list of images have different
    # dimensions for each image, so just checking the first image
    # is not _exactly_ correct, but it is simple.
    while isinstance(image, list):
        image = image[0]

    if height is None:
        if isinstance(image, PIL.Image.Image):
            height = image.height
        elif isinstance(image, torch.Tensor):
            height = image.shape[-2]

        # round down to nearest multiple of `self.adapter.downscale_factor`
        height = (height // class_name.adapter.downscale_factor) * class_name.adapter.downscale_factor

    if width is None:
        if isinstance(image, PIL.Image.Image):
            width = image.width
        elif isinstance(image, torch.Tensor):
            width = image.shape[-1]

        # round down to nearest multiple of `self.adapter.downscale_factor`
        width = (width // class_name.adapter.downscale_factor) * class_name.adapter.downscale_factor

    return height, width