duongtruongbinh's picture
Upload agent
ed2ce53 verified
from smolagents import Tool
from typing import Any, Optional
class SimpleTool(Tool):
name = "summarize_news"
description = "Summarizes the given Vietnamese news text."
inputs = {"text":{"type":"string","description":"The Vietnamese news text to be summarized."}}
output_type = "string"
def forward(self, text: str) -> str:
"""
Summarizes the given Vietnamese news text.
Args:
text (str): The Vietnamese news text to be summarized.
Returns:
str: The summarized version of the input text.
"""
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
model_name = "VietAI/vit5-base-vietnews-summarization"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.cuda()
formatted_text = "vietnews: " + text + " </s>"
device = "cuda" if torch.cuda.is_available() else "cpu"
encoding = tokenizer(formatted_text, return_tensors="pt")
input_ids = encoding["input_ids"].to(device)
attention_masks = encoding["attention_mask"].to(device)
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_masks,
max_length=256,
)
summary = tokenizer.decode(
outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
return summary