File size: 1,578 Bytes
1ca3697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from smolagents import Tool
from typing import Any, Optional

class SimpleTool(Tool):
    name = "summarize_news"
    description = "This tool summarizes the given Vietnamese news text."
    inputs = {"text":{"type":"string","description":"The Vietnamese news text to be summarized."}}
    output_type = "string"

    def forward(self, text: str) -> str:
        """
        This tool summarizes the given Vietnamese news text.

        Args:
            text (str): The Vietnamese news text to be summarized.

        Returns:
            str: The summarized version of the input text.
        """
        from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
        import torch
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model_name = "VietAI/vit5-base-vietnews-summarization"
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
        model.cuda()

        formatted_text = "vietnews: " + text + " </s>"

        encoding = tokenizer(formatted_text, return_tensors="pt")
        input_ids = encoding["input_ids"].to(device)
        attention_masks = encoding["attention_mask"].to(device)

        with torch.no_grad():
            outputs = model.generate(
                input_ids=input_ids,
                attention_mask=attention_masks,
                max_length=256,
            )

        summary = tokenizer.decode(
            outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
        return summary