Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
import inspect | |
import os | |
from collections import OrderedDict | |
from pathlib import Path | |
from typing import List, Optional, Union | |
import safetensors | |
import torch | |
from huggingface_hub.utils import EntryNotFoundError | |
from ..quantizers.quantization_config import QuantizationMethod | |
from ..utils import ( | |
SAFE_WEIGHTS_INDEX_NAME, | |
SAFETENSORS_FILE_EXTENSION, | |
WEIGHTS_INDEX_NAME, | |
_add_variant, | |
_get_model_file, | |
deprecate, | |
is_accelerate_available, | |
is_torch_version, | |
logging, | |
) | |
logger = logging.get_logger(__name__) | |
_CLASS_REMAPPING_DICT = { | |
"Transformer2DModel": { | |
"ada_norm_zero": "DiTTransformer2DModel", | |
"ada_norm_single": "PixArtTransformer2DModel", | |
} | |
} | |
if is_accelerate_available(): | |
from accelerate import infer_auto_device_map | |
from accelerate.utils import get_balanced_memory, get_max_memory, set_module_tensor_to_device | |
# Adapted from `transformers` (see modeling_utils.py) | |
def _determine_device_map( | |
model: torch.nn.Module, device_map, max_memory, torch_dtype, keep_in_fp32_modules=[], hf_quantizer=None | |
): | |
if isinstance(device_map, str): | |
special_dtypes = {} | |
if hf_quantizer is not None: | |
special_dtypes.update(hf_quantizer.get_special_dtypes_update(model, torch_dtype)) | |
special_dtypes.update( | |
{ | |
name: torch.float32 | |
for name, _ in model.named_parameters() | |
if any(m in name for m in keep_in_fp32_modules) | |
} | |
) | |
target_dtype = torch_dtype | |
if hf_quantizer is not None: | |
target_dtype = hf_quantizer.adjust_target_dtype(target_dtype) | |
no_split_modules = model._get_no_split_modules(device_map) | |
device_map_kwargs = {"no_split_module_classes": no_split_modules} | |
if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters: | |
device_map_kwargs["special_dtypes"] = special_dtypes | |
elif len(special_dtypes) > 0: | |
logger.warning( | |
"This model has some weights that should be kept in higher precision, you need to upgrade " | |
"`accelerate` to properly deal with them (`pip install --upgrade accelerate`)." | |
) | |
if device_map != "sequential": | |
max_memory = get_balanced_memory( | |
model, | |
dtype=torch_dtype, | |
low_zero=(device_map == "balanced_low_0"), | |
max_memory=max_memory, | |
**device_map_kwargs, | |
) | |
else: | |
max_memory = get_max_memory(max_memory) | |
if hf_quantizer is not None: | |
max_memory = hf_quantizer.adjust_max_memory(max_memory) | |
device_map_kwargs["max_memory"] = max_memory | |
device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs) | |
if hf_quantizer is not None: | |
hf_quantizer.validate_environment(device_map=device_map) | |
return device_map | |
def _fetch_remapped_cls_from_config(config, old_class): | |
previous_class_name = old_class.__name__ | |
remapped_class_name = _CLASS_REMAPPING_DICT.get(previous_class_name).get(config["norm_type"], None) | |
# Details: | |
# https://github.com/huggingface/diffusers/pull/7647#discussion_r1621344818 | |
if remapped_class_name: | |
# load diffusers library to import compatible and original scheduler | |
diffusers_library = importlib.import_module(__name__.split(".")[0]) | |
remapped_class = getattr(diffusers_library, remapped_class_name) | |
logger.info( | |
f"Changing class object to be of `{remapped_class_name}` type from `{previous_class_name}` type." | |
f"This is because `{previous_class_name}` is scheduled to be deprecated in a future version. Note that this" | |
" DOESN'T affect the final results." | |
) | |
return remapped_class | |
else: | |
return old_class | |
def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str] = None): | |
""" | |
Reads a checkpoint file, returning properly formatted errors if they arise. | |
""" | |
# TODO: We merge the sharded checkpoints in case we're doing quantization. We can revisit this change | |
# when refactoring the _merge_sharded_checkpoints() method later. | |
if isinstance(checkpoint_file, dict): | |
return checkpoint_file | |
try: | |
file_extension = os.path.basename(checkpoint_file).split(".")[-1] | |
if file_extension == SAFETENSORS_FILE_EXTENSION: | |
return safetensors.torch.load_file(checkpoint_file, device="cpu") | |
else: | |
weights_only_kwarg = {"weights_only": True} if is_torch_version(">=", "1.13") else {} | |
return torch.load( | |
checkpoint_file, | |
map_location="cpu", | |
**weights_only_kwarg, | |
) | |
except Exception as e: | |
try: | |
with open(checkpoint_file) as f: | |
if f.read().startswith("version"): | |
raise OSError( | |
"You seem to have cloned a repository without having git-lfs installed. Please install " | |
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder " | |
"you cloned." | |
) | |
else: | |
raise ValueError( | |
f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained " | |
"model. Make sure you have saved the model properly." | |
) from e | |
except (UnicodeDecodeError, ValueError): | |
raise OSError( | |
f"Unable to load weights from checkpoint file for '{checkpoint_file}' " f"at '{checkpoint_file}'. " | |
) | |
def load_model_dict_into_meta( | |
model, | |
state_dict: OrderedDict, | |
device: Optional[Union[str, torch.device]] = None, | |
dtype: Optional[Union[str, torch.dtype]] = None, | |
model_name_or_path: Optional[str] = None, | |
hf_quantizer=None, | |
keep_in_fp32_modules=None, | |
) -> List[str]: | |
if hf_quantizer is None: | |
device = device or torch.device("cpu") | |
dtype = dtype or torch.float32 | |
is_quantized = hf_quantizer is not None | |
is_quant_method_bnb = getattr(model, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES | |
accepts_dtype = "dtype" in set(inspect.signature(set_module_tensor_to_device).parameters.keys()) | |
empty_state_dict = model.state_dict() | |
unexpected_keys = [param_name for param_name in state_dict if param_name not in empty_state_dict] | |
for param_name, param in state_dict.items(): | |
if param_name not in empty_state_dict: | |
continue | |
set_module_kwargs = {} | |
# We convert floating dtypes to the `dtype` passed. We also want to keep the buffers/params | |
# in int/uint/bool and not cast them. | |
# TODO: revisit cases when param.dtype == torch.float8_e4m3fn | |
if torch.is_floating_point(param): | |
if ( | |
keep_in_fp32_modules is not None | |
and any( | |
module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules | |
) | |
and dtype == torch.float16 | |
): | |
param = param.to(torch.float32) | |
if accepts_dtype: | |
set_module_kwargs["dtype"] = torch.float32 | |
else: | |
param = param.to(dtype) | |
if accepts_dtype: | |
set_module_kwargs["dtype"] = dtype | |
# bnb params are flattened. | |
if empty_state_dict[param_name].shape != param.shape: | |
if ( | |
is_quant_method_bnb | |
and hf_quantizer.pre_quantized | |
and hf_quantizer.check_if_quantized_param(model, param, param_name, state_dict, param_device=device) | |
): | |
hf_quantizer.check_quantized_param_shape(param_name, empty_state_dict[param_name].shape, param.shape) | |
elif not is_quant_method_bnb: | |
model_name_or_path_str = f"{model_name_or_path} " if model_name_or_path is not None else "" | |
raise ValueError( | |
f"Cannot load {model_name_or_path_str} because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example." | |
) | |
if is_quantized and ( | |
hf_quantizer.check_if_quantized_param(model, param, param_name, state_dict, param_device=device) | |
): | |
hf_quantizer.create_quantized_param(model, param, param_name, device, state_dict, unexpected_keys) | |
else: | |
if accepts_dtype: | |
set_module_tensor_to_device(model, param_name, device, value=param, **set_module_kwargs) | |
else: | |
set_module_tensor_to_device(model, param_name, device, value=param) | |
return unexpected_keys | |
def _load_state_dict_into_model(model_to_load, state_dict: OrderedDict) -> List[str]: | |
# Convert old format to new format if needed from a PyTorch state_dict | |
# copy state_dict so _load_from_state_dict can modify it | |
state_dict = state_dict.copy() | |
error_msgs = [] | |
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants | |
# so we need to apply the function recursively. | |
def load(module: torch.nn.Module, prefix: str = ""): | |
args = (state_dict, prefix, {}, True, [], [], error_msgs) | |
module._load_from_state_dict(*args) | |
for name, child in module._modules.items(): | |
if child is not None: | |
load(child, prefix + name + ".") | |
load(model_to_load) | |
return error_msgs | |
def _fetch_index_file( | |
is_local, | |
pretrained_model_name_or_path, | |
subfolder, | |
use_safetensors, | |
cache_dir, | |
variant, | |
force_download, | |
proxies, | |
local_files_only, | |
token, | |
revision, | |
user_agent, | |
commit_hash, | |
): | |
if is_local: | |
index_file = Path( | |
pretrained_model_name_or_path, | |
subfolder or "", | |
_add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, variant), | |
) | |
else: | |
index_file_in_repo = Path( | |
subfolder or "", | |
_add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, variant), | |
).as_posix() | |
try: | |
index_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=index_file_in_repo, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=None, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
index_file = Path(index_file) | |
except (EntryNotFoundError, EnvironmentError): | |
index_file = None | |
return index_file | |
# Adapted from | |
# https://github.com/bghira/SimpleTuner/blob/cea2457ab063f6dedb9e697830ae68a96be90641/helpers/training/save_hooks.py#L64 | |
def _merge_sharded_checkpoints(sharded_ckpt_cached_folder, sharded_metadata): | |
weight_map = sharded_metadata.get("weight_map", None) | |
if weight_map is None: | |
raise KeyError("'weight_map' key not found in the shard index file.") | |
# Collect all unique safetensors files from weight_map | |
files_to_load = set(weight_map.values()) | |
is_safetensors = all(f.endswith(".safetensors") for f in files_to_load) | |
merged_state_dict = {} | |
# Load tensors from each unique file | |
for file_name in files_to_load: | |
part_file_path = os.path.join(sharded_ckpt_cached_folder, file_name) | |
if not os.path.exists(part_file_path): | |
raise FileNotFoundError(f"Part file {file_name} not found.") | |
if is_safetensors: | |
with safetensors.safe_open(part_file_path, framework="pt", device="cpu") as f: | |
for tensor_key in f.keys(): | |
if tensor_key in weight_map: | |
merged_state_dict[tensor_key] = f.get_tensor(tensor_key) | |
else: | |
merged_state_dict.update(torch.load(part_file_path, weights_only=True, map_location="cpu")) | |
return merged_state_dict | |
def _fetch_index_file_legacy( | |
is_local, | |
pretrained_model_name_or_path, | |
subfolder, | |
use_safetensors, | |
cache_dir, | |
variant, | |
force_download, | |
proxies, | |
local_files_only, | |
token, | |
revision, | |
user_agent, | |
commit_hash, | |
): | |
if is_local: | |
index_file = Path( | |
pretrained_model_name_or_path, | |
subfolder or "", | |
SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, | |
).as_posix() | |
splits = index_file.split(".") | |
split_index = -3 if ".cache" in index_file else -2 | |
splits = splits[:-split_index] + [variant] + splits[-split_index:] | |
index_file = ".".join(splits) | |
if os.path.exists(index_file): | |
deprecation_message = f"This serialization format is now deprecated to standardize the serialization format between `transformers` and `diffusers`. We recommend you to remove the existing files associated with the current variant ({variant}) and re-obtain them by running a `save_pretrained()`." | |
deprecate("legacy_sharded_ckpts_with_variant", "1.0.0", deprecation_message, standard_warn=False) | |
index_file = Path(index_file) | |
else: | |
index_file = None | |
else: | |
if variant is not None: | |
index_file_in_repo = Path( | |
subfolder or "", | |
SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, | |
).as_posix() | |
splits = index_file_in_repo.split(".") | |
split_index = -2 | |
splits = splits[:-split_index] + [variant] + splits[-split_index:] | |
index_file_in_repo = ".".join(splits) | |
try: | |
index_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=index_file_in_repo, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=None, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
index_file = Path(index_file) | |
deprecation_message = f"This serialization format is now deprecated to standardize the serialization format between `transformers` and `diffusers`. We recommend you to remove the existing files associated with the current variant ({variant}) and re-obtain them by running a `save_pretrained()`." | |
deprecate("legacy_sharded_ckpts_with_variant", "1.0.0", deprecation_message, standard_warn=False) | |
except (EntryNotFoundError, EnvironmentError): | |
index_file = None | |
return index_file | |