Spaces:
Runtime error
Runtime error
File size: 16,094 Bytes
8a6cf24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import inspect
import os
from collections import OrderedDict
from pathlib import Path
from typing import List, Optional, Union
import safetensors
import torch
from huggingface_hub.utils import EntryNotFoundError
from ..quantizers.quantization_config import QuantizationMethod
from ..utils import (
SAFE_WEIGHTS_INDEX_NAME,
SAFETENSORS_FILE_EXTENSION,
WEIGHTS_INDEX_NAME,
_add_variant,
_get_model_file,
deprecate,
is_accelerate_available,
is_torch_version,
logging,
)
logger = logging.get_logger(__name__)
_CLASS_REMAPPING_DICT = {
"Transformer2DModel": {
"ada_norm_zero": "DiTTransformer2DModel",
"ada_norm_single": "PixArtTransformer2DModel",
}
}
if is_accelerate_available():
from accelerate import infer_auto_device_map
from accelerate.utils import get_balanced_memory, get_max_memory, set_module_tensor_to_device
# Adapted from `transformers` (see modeling_utils.py)
def _determine_device_map(
model: torch.nn.Module, device_map, max_memory, torch_dtype, keep_in_fp32_modules=[], hf_quantizer=None
):
if isinstance(device_map, str):
special_dtypes = {}
if hf_quantizer is not None:
special_dtypes.update(hf_quantizer.get_special_dtypes_update(model, torch_dtype))
special_dtypes.update(
{
name: torch.float32
for name, _ in model.named_parameters()
if any(m in name for m in keep_in_fp32_modules)
}
)
target_dtype = torch_dtype
if hf_quantizer is not None:
target_dtype = hf_quantizer.adjust_target_dtype(target_dtype)
no_split_modules = model._get_no_split_modules(device_map)
device_map_kwargs = {"no_split_module_classes": no_split_modules}
if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
device_map_kwargs["special_dtypes"] = special_dtypes
elif len(special_dtypes) > 0:
logger.warning(
"This model has some weights that should be kept in higher precision, you need to upgrade "
"`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
)
if device_map != "sequential":
max_memory = get_balanced_memory(
model,
dtype=torch_dtype,
low_zero=(device_map == "balanced_low_0"),
max_memory=max_memory,
**device_map_kwargs,
)
else:
max_memory = get_max_memory(max_memory)
if hf_quantizer is not None:
max_memory = hf_quantizer.adjust_max_memory(max_memory)
device_map_kwargs["max_memory"] = max_memory
device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)
if hf_quantizer is not None:
hf_quantizer.validate_environment(device_map=device_map)
return device_map
def _fetch_remapped_cls_from_config(config, old_class):
previous_class_name = old_class.__name__
remapped_class_name = _CLASS_REMAPPING_DICT.get(previous_class_name).get(config["norm_type"], None)
# Details:
# https://github.com/huggingface/diffusers/pull/7647#discussion_r1621344818
if remapped_class_name:
# load diffusers library to import compatible and original scheduler
diffusers_library = importlib.import_module(__name__.split(".")[0])
remapped_class = getattr(diffusers_library, remapped_class_name)
logger.info(
f"Changing class object to be of `{remapped_class_name}` type from `{previous_class_name}` type."
f"This is because `{previous_class_name}` is scheduled to be deprecated in a future version. Note that this"
" DOESN'T affect the final results."
)
return remapped_class
else:
return old_class
def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str] = None):
"""
Reads a checkpoint file, returning properly formatted errors if they arise.
"""
# TODO: We merge the sharded checkpoints in case we're doing quantization. We can revisit this change
# when refactoring the _merge_sharded_checkpoints() method later.
if isinstance(checkpoint_file, dict):
return checkpoint_file
try:
file_extension = os.path.basename(checkpoint_file).split(".")[-1]
if file_extension == SAFETENSORS_FILE_EXTENSION:
return safetensors.torch.load_file(checkpoint_file, device="cpu")
else:
weights_only_kwarg = {"weights_only": True} if is_torch_version(">=", "1.13") else {}
return torch.load(
checkpoint_file,
map_location="cpu",
**weights_only_kwarg,
)
except Exception as e:
try:
with open(checkpoint_file) as f:
if f.read().startswith("version"):
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please install "
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
"you cloned."
)
else:
raise ValueError(
f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
"model. Make sure you have saved the model properly."
) from e
except (UnicodeDecodeError, ValueError):
raise OSError(
f"Unable to load weights from checkpoint file for '{checkpoint_file}' " f"at '{checkpoint_file}'. "
)
def load_model_dict_into_meta(
model,
state_dict: OrderedDict,
device: Optional[Union[str, torch.device]] = None,
dtype: Optional[Union[str, torch.dtype]] = None,
model_name_or_path: Optional[str] = None,
hf_quantizer=None,
keep_in_fp32_modules=None,
) -> List[str]:
if hf_quantizer is None:
device = device or torch.device("cpu")
dtype = dtype or torch.float32
is_quantized = hf_quantizer is not None
is_quant_method_bnb = getattr(model, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES
accepts_dtype = "dtype" in set(inspect.signature(set_module_tensor_to_device).parameters.keys())
empty_state_dict = model.state_dict()
unexpected_keys = [param_name for param_name in state_dict if param_name not in empty_state_dict]
for param_name, param in state_dict.items():
if param_name not in empty_state_dict:
continue
set_module_kwargs = {}
# We convert floating dtypes to the `dtype` passed. We also want to keep the buffers/params
# in int/uint/bool and not cast them.
# TODO: revisit cases when param.dtype == torch.float8_e4m3fn
if torch.is_floating_point(param):
if (
keep_in_fp32_modules is not None
and any(
module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
)
and dtype == torch.float16
):
param = param.to(torch.float32)
if accepts_dtype:
set_module_kwargs["dtype"] = torch.float32
else:
param = param.to(dtype)
if accepts_dtype:
set_module_kwargs["dtype"] = dtype
# bnb params are flattened.
if empty_state_dict[param_name].shape != param.shape:
if (
is_quant_method_bnb
and hf_quantizer.pre_quantized
and hf_quantizer.check_if_quantized_param(model, param, param_name, state_dict, param_device=device)
):
hf_quantizer.check_quantized_param_shape(param_name, empty_state_dict[param_name].shape, param.shape)
elif not is_quant_method_bnb:
model_name_or_path_str = f"{model_name_or_path} " if model_name_or_path is not None else ""
raise ValueError(
f"Cannot load {model_name_or_path_str} because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
)
if is_quantized and (
hf_quantizer.check_if_quantized_param(model, param, param_name, state_dict, param_device=device)
):
hf_quantizer.create_quantized_param(model, param, param_name, device, state_dict, unexpected_keys)
else:
if accepts_dtype:
set_module_tensor_to_device(model, param_name, device, value=param, **set_module_kwargs)
else:
set_module_tensor_to_device(model, param_name, device, value=param)
return unexpected_keys
def _load_state_dict_into_model(model_to_load, state_dict: OrderedDict) -> List[str]:
# Convert old format to new format if needed from a PyTorch state_dict
# copy state_dict so _load_from_state_dict can modify it
state_dict = state_dict.copy()
error_msgs = []
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
# so we need to apply the function recursively.
def load(module: torch.nn.Module, prefix: str = ""):
args = (state_dict, prefix, {}, True, [], [], error_msgs)
module._load_from_state_dict(*args)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
load(model_to_load)
return error_msgs
def _fetch_index_file(
is_local,
pretrained_model_name_or_path,
subfolder,
use_safetensors,
cache_dir,
variant,
force_download,
proxies,
local_files_only,
token,
revision,
user_agent,
commit_hash,
):
if is_local:
index_file = Path(
pretrained_model_name_or_path,
subfolder or "",
_add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, variant),
)
else:
index_file_in_repo = Path(
subfolder or "",
_add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, variant),
).as_posix()
try:
index_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=index_file_in_repo,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=None,
user_agent=user_agent,
commit_hash=commit_hash,
)
index_file = Path(index_file)
except (EntryNotFoundError, EnvironmentError):
index_file = None
return index_file
# Adapted from
# https://github.com/bghira/SimpleTuner/blob/cea2457ab063f6dedb9e697830ae68a96be90641/helpers/training/save_hooks.py#L64
def _merge_sharded_checkpoints(sharded_ckpt_cached_folder, sharded_metadata):
weight_map = sharded_metadata.get("weight_map", None)
if weight_map is None:
raise KeyError("'weight_map' key not found in the shard index file.")
# Collect all unique safetensors files from weight_map
files_to_load = set(weight_map.values())
is_safetensors = all(f.endswith(".safetensors") for f in files_to_load)
merged_state_dict = {}
# Load tensors from each unique file
for file_name in files_to_load:
part_file_path = os.path.join(sharded_ckpt_cached_folder, file_name)
if not os.path.exists(part_file_path):
raise FileNotFoundError(f"Part file {file_name} not found.")
if is_safetensors:
with safetensors.safe_open(part_file_path, framework="pt", device="cpu") as f:
for tensor_key in f.keys():
if tensor_key in weight_map:
merged_state_dict[tensor_key] = f.get_tensor(tensor_key)
else:
merged_state_dict.update(torch.load(part_file_path, weights_only=True, map_location="cpu"))
return merged_state_dict
def _fetch_index_file_legacy(
is_local,
pretrained_model_name_or_path,
subfolder,
use_safetensors,
cache_dir,
variant,
force_download,
proxies,
local_files_only,
token,
revision,
user_agent,
commit_hash,
):
if is_local:
index_file = Path(
pretrained_model_name_or_path,
subfolder or "",
SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME,
).as_posix()
splits = index_file.split(".")
split_index = -3 if ".cache" in index_file else -2
splits = splits[:-split_index] + [variant] + splits[-split_index:]
index_file = ".".join(splits)
if os.path.exists(index_file):
deprecation_message = f"This serialization format is now deprecated to standardize the serialization format between `transformers` and `diffusers`. We recommend you to remove the existing files associated with the current variant ({variant}) and re-obtain them by running a `save_pretrained()`."
deprecate("legacy_sharded_ckpts_with_variant", "1.0.0", deprecation_message, standard_warn=False)
index_file = Path(index_file)
else:
index_file = None
else:
if variant is not None:
index_file_in_repo = Path(
subfolder or "",
SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME,
).as_posix()
splits = index_file_in_repo.split(".")
split_index = -2
splits = splits[:-split_index] + [variant] + splits[-split_index:]
index_file_in_repo = ".".join(splits)
try:
index_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=index_file_in_repo,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=None,
user_agent=user_agent,
commit_hash=commit_hash,
)
index_file = Path(index_file)
deprecation_message = f"This serialization format is now deprecated to standardize the serialization format between `transformers` and `diffusers`. We recommend you to remove the existing files associated with the current variant ({variant}) and re-obtain them by running a `save_pretrained()`."
deprecate("legacy_sharded_ckpts_with_variant", "1.0.0", deprecation_message, standard_warn=False)
except (EntryNotFoundError, EnvironmentError):
index_file = None
return index_file
|