dungmai's picture
Upload folder using huggingface_hub
8a6cf24 verified
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
import os
import platform
import subprocess
import sys
from dataclasses import dataclass, field
from functools import lru_cache
from shutil import which
from typing import List, Optional
import torch
from packaging.version import parse
logger = logging.getLogger(__name__)
def convert_dict_to_env_variables(current_env: dict):
"""
Verifies that all keys and values in `current_env` do not contain illegal keys or values, and returns a list of
strings as the result.
Example:
```python
>>> from accelerate.utils.environment import verify_env
>>> env = {"ACCELERATE_DEBUG_MODE": "1", "BAD_ENV_NAME": "<mything", "OTHER_ENV": "2"}
>>> valid_env_items = verify_env(env)
>>> print(valid_env_items)
["ACCELERATE_DEBUG_MODE=1\n", "OTHER_ENV=2\n"]
```
"""
forbidden_chars = [";", "\n", "<", ">", " "]
valid_env_items = []
for key, value in current_env.items():
if all(char not in (key + value) for char in forbidden_chars) and len(key) >= 1 and len(value) >= 1:
valid_env_items.append(f"{key}={value}\n")
else:
logger.warning(f"WARNING: Skipping {key}={value} as it contains forbidden characters or missing values.")
return valid_env_items
def str_to_bool(value) -> int:
"""
Converts a string representation of truth to `True` (1) or `False` (0).
True values are `y`, `yes`, `t`, `true`, `on`, and `1`; False value are `n`, `no`, `f`, `false`, `off`, and `0`;
"""
value = value.lower()
if value in ("y", "yes", "t", "true", "on", "1"):
return 1
elif value in ("n", "no", "f", "false", "off", "0"):
return 0
else:
raise ValueError(f"invalid truth value {value}")
def get_int_from_env(env_keys, default):
"""Returns the first positive env value found in the `env_keys` list or the default."""
for e in env_keys:
val = int(os.environ.get(e, -1))
if val >= 0:
return val
return default
def parse_flag_from_env(key, default=False):
"""Returns truthy value for `key` from the env if available else the default."""
value = os.environ.get(key, str(default))
return str_to_bool(value) == 1 # As its name indicates `str_to_bool` actually returns an int...
def parse_choice_from_env(key, default="no"):
value = os.environ.get(key, str(default))
return value
def are_libraries_initialized(*library_names: str) -> List[str]:
"""
Checks if any of `library_names` are imported in the environment. Will return any names that are.
"""
return [lib_name for lib_name in library_names if lib_name in sys.modules.keys()]
def _nvidia_smi():
"""
Returns the right nvidia-smi command based on the system.
"""
if platform.system() == "Windows":
# If platform is Windows and nvidia-smi can't be found in path
# try from systemd drive with default installation path
command = which("nvidia-smi")
if command is None:
command = "%s\\Program Files\\NVIDIA Corporation\\NVSMI\\nvidia-smi.exe" % os.environ["systemdrive"]
else:
command = "nvidia-smi"
return command
def get_gpu_info():
"""
Gets GPU count and names using `nvidia-smi` instead of torch to not initialize CUDA.
Largely based on the `gputil` library.
"""
# Returns as list of `n` GPUs and their names
output = subprocess.check_output(
[_nvidia_smi(), "--query-gpu=count,name", "--format=csv,noheader"], universal_newlines=True
)
output = output.strip()
gpus = output.split(os.linesep)
# Get names from output
gpu_count = len(gpus)
gpu_names = [gpu.split(",")[1].strip() for gpu in gpus]
return gpu_names, gpu_count
def get_driver_version():
"""
Returns the driver version
In the case of multiple GPUs, will return the first.
"""
output = subprocess.check_output(
[_nvidia_smi(), "--query-gpu=driver_version", "--format=csv,noheader"], universal_newlines=True
)
output = output.strip()
return output.split(os.linesep)[0]
def check_cuda_p2p_ib_support():
"""
Checks if the devices being used have issues with P2P and IB communications, namely any consumer GPU hardware after
the 3090.
Noteably uses `nvidia-smi` instead of torch to not initialize CUDA.
"""
try:
device_names, device_count = get_gpu_info()
# As new consumer GPUs get released, add them to `unsupported_devices``
unsupported_devices = {"RTX 40"}
if device_count > 1:
if any(
unsupported_device in device_name
for device_name in device_names
for unsupported_device in unsupported_devices
):
# Check if they have the right driver version
acceptable_driver_version = "550.40.07"
current_driver_version = get_driver_version()
if parse(current_driver_version) < parse(acceptable_driver_version):
return False
return True
except Exception:
pass
return True
def check_fp8_capability():
"""
Checks if all the current GPUs available support FP8.
Notably must initialize `torch.cuda` to check.
"""
cuda_device_capacity = torch.cuda.get_device_capability()
return cuda_device_capacity >= (8, 9)
@dataclass
class CPUInformation:
"""
Stores information about the CPU in a distributed environment. It contains the following attributes:
- rank: The rank of the current process.
- world_size: The total number of processes in the world.
- local_rank: The rank of the current process on the local node.
- local_world_size: The total number of processes on the local node.
"""
rank: int = field(default=0, metadata={"help": "The rank of the current process."})
world_size: int = field(default=1, metadata={"help": "The total number of processes in the world."})
local_rank: int = field(default=0, metadata={"help": "The rank of the current process on the local node."})
local_world_size: int = field(default=1, metadata={"help": "The total number of processes on the local node."})
def get_cpu_distributed_information() -> CPUInformation:
"""
Returns various information about the environment in relation to CPU distributed training as a `CPUInformation`
dataclass.
"""
information = {}
information["rank"] = get_int_from_env(["RANK", "PMI_RANK", "OMPI_COMM_WORLD_RANK", "MV2_COMM_WORLD_RANK"], 0)
information["world_size"] = get_int_from_env(
["WORLD_SIZE", "PMI_SIZE", "OMPI_COMM_WORLD_SIZE", "MV2_COMM_WORLD_SIZE"], 1
)
information["local_rank"] = get_int_from_env(
["LOCAL_RANK", "MPI_LOCALRANKID", "OMPI_COMM_WORLD_LOCAL_RANK", "MV2_COMM_WORLD_LOCAL_RANK"], 0
)
information["local_world_size"] = get_int_from_env(
["LOCAL_WORLD_SIZE", "MPI_LOCALNRANKS", "OMPI_COMM_WORLD_LOCAL_SIZE", "MV2_COMM_WORLD_LOCAL_SIZE"],
1,
)
return CPUInformation(**information)
def override_numa_affinity(local_process_index: int, verbose: Optional[bool] = None) -> None:
"""
Overrides whatever NUMA affinity is set for the current process. This is very taxing and requires recalculating the
affinity to set, ideally you should use `utils.environment.set_numa_affinity` instead.
Args:
local_process_index (int):
The index of the current process on the current server.
verbose (bool, *optional*):
Whether to log out the assignment of each CPU. If `ACCELERATE_DEBUG_MODE` is enabled, will default to True.
"""
if verbose is None:
verbose = parse_flag_from_env("ACCELERATE_DEBUG_MODE", False)
if torch.cuda.is_available():
from accelerate.utils import is_pynvml_available
if not is_pynvml_available():
raise ImportError(
"To set CPU affinity on CUDA GPUs the `pynvml` package must be available. (`pip install pynvml`)"
)
import pynvml as nvml
# The below code is based on https://github.com/NVIDIA/DeepLearningExamples/blob/master/TensorFlow2/LanguageModeling/BERT/gpu_affinity.py
nvml.nvmlInit()
num_elements = math.ceil(os.cpu_count() / 64)
handle = nvml.nvmlDeviceGetHandleByIndex(local_process_index)
affinity_string = ""
for j in nvml.nvmlDeviceGetCpuAffinity(handle, num_elements):
# assume nvml returns list of 64 bit ints
affinity_string = f"{j:064b}{affinity_string}"
affinity_list = [int(x) for x in affinity_string]
affinity_list.reverse() # so core 0 is the 0th element
affinity_to_set = [i for i, e in enumerate(affinity_list) if e != 0]
os.sched_setaffinity(0, affinity_to_set)
if verbose:
cpu_cores = os.sched_getaffinity(0)
logger.info(f"Assigning {len(cpu_cores)} cpu cores to process {local_process_index}: {cpu_cores}")
@lru_cache
def set_numa_affinity(local_process_index: int, verbose: Optional[bool] = None) -> None:
"""
Assigns the current process to a specific NUMA node. Ideally most efficient when having at least 2 cpus per node.
This result is cached between calls. If you want to override it, please use
`accelerate.utils.environment.override_numa_afifnity`.
Args:
local_process_index (int):
The index of the current process on the current server.
verbose (bool, *optional*):
Whether to print the new cpu cores assignment for each process. If `ACCELERATE_DEBUG_MODE` is enabled, will
default to True.
"""
override_numa_affinity(local_process_index=local_process_index, verbose=verbose)