Spaces:
Runtime error
Runtime error
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
import math | |
import os | |
import platform | |
import subprocess | |
import sys | |
from dataclasses import dataclass, field | |
from functools import lru_cache | |
from shutil import which | |
from typing import List, Optional | |
import torch | |
from packaging.version import parse | |
logger = logging.getLogger(__name__) | |
def convert_dict_to_env_variables(current_env: dict): | |
""" | |
Verifies that all keys and values in `current_env` do not contain illegal keys or values, and returns a list of | |
strings as the result. | |
Example: | |
```python | |
>>> from accelerate.utils.environment import verify_env | |
>>> env = {"ACCELERATE_DEBUG_MODE": "1", "BAD_ENV_NAME": "<mything", "OTHER_ENV": "2"} | |
>>> valid_env_items = verify_env(env) | |
>>> print(valid_env_items) | |
["ACCELERATE_DEBUG_MODE=1\n", "OTHER_ENV=2\n"] | |
``` | |
""" | |
forbidden_chars = [";", "\n", "<", ">", " "] | |
valid_env_items = [] | |
for key, value in current_env.items(): | |
if all(char not in (key + value) for char in forbidden_chars) and len(key) >= 1 and len(value) >= 1: | |
valid_env_items.append(f"{key}={value}\n") | |
else: | |
logger.warning(f"WARNING: Skipping {key}={value} as it contains forbidden characters or missing values.") | |
return valid_env_items | |
def str_to_bool(value) -> int: | |
""" | |
Converts a string representation of truth to `True` (1) or `False` (0). | |
True values are `y`, `yes`, `t`, `true`, `on`, and `1`; False value are `n`, `no`, `f`, `false`, `off`, and `0`; | |
""" | |
value = value.lower() | |
if value in ("y", "yes", "t", "true", "on", "1"): | |
return 1 | |
elif value in ("n", "no", "f", "false", "off", "0"): | |
return 0 | |
else: | |
raise ValueError(f"invalid truth value {value}") | |
def get_int_from_env(env_keys, default): | |
"""Returns the first positive env value found in the `env_keys` list or the default.""" | |
for e in env_keys: | |
val = int(os.environ.get(e, -1)) | |
if val >= 0: | |
return val | |
return default | |
def parse_flag_from_env(key, default=False): | |
"""Returns truthy value for `key` from the env if available else the default.""" | |
value = os.environ.get(key, str(default)) | |
return str_to_bool(value) == 1 # As its name indicates `str_to_bool` actually returns an int... | |
def parse_choice_from_env(key, default="no"): | |
value = os.environ.get(key, str(default)) | |
return value | |
def are_libraries_initialized(*library_names: str) -> List[str]: | |
""" | |
Checks if any of `library_names` are imported in the environment. Will return any names that are. | |
""" | |
return [lib_name for lib_name in library_names if lib_name in sys.modules.keys()] | |
def _nvidia_smi(): | |
""" | |
Returns the right nvidia-smi command based on the system. | |
""" | |
if platform.system() == "Windows": | |
# If platform is Windows and nvidia-smi can't be found in path | |
# try from systemd drive with default installation path | |
command = which("nvidia-smi") | |
if command is None: | |
command = "%s\\Program Files\\NVIDIA Corporation\\NVSMI\\nvidia-smi.exe" % os.environ["systemdrive"] | |
else: | |
command = "nvidia-smi" | |
return command | |
def get_gpu_info(): | |
""" | |
Gets GPU count and names using `nvidia-smi` instead of torch to not initialize CUDA. | |
Largely based on the `gputil` library. | |
""" | |
# Returns as list of `n` GPUs and their names | |
output = subprocess.check_output( | |
[_nvidia_smi(), "--query-gpu=count,name", "--format=csv,noheader"], universal_newlines=True | |
) | |
output = output.strip() | |
gpus = output.split(os.linesep) | |
# Get names from output | |
gpu_count = len(gpus) | |
gpu_names = [gpu.split(",")[1].strip() for gpu in gpus] | |
return gpu_names, gpu_count | |
def get_driver_version(): | |
""" | |
Returns the driver version | |
In the case of multiple GPUs, will return the first. | |
""" | |
output = subprocess.check_output( | |
[_nvidia_smi(), "--query-gpu=driver_version", "--format=csv,noheader"], universal_newlines=True | |
) | |
output = output.strip() | |
return output.split(os.linesep)[0] | |
def check_cuda_p2p_ib_support(): | |
""" | |
Checks if the devices being used have issues with P2P and IB communications, namely any consumer GPU hardware after | |
the 3090. | |
Noteably uses `nvidia-smi` instead of torch to not initialize CUDA. | |
""" | |
try: | |
device_names, device_count = get_gpu_info() | |
# As new consumer GPUs get released, add them to `unsupported_devices`` | |
unsupported_devices = {"RTX 40"} | |
if device_count > 1: | |
if any( | |
unsupported_device in device_name | |
for device_name in device_names | |
for unsupported_device in unsupported_devices | |
): | |
# Check if they have the right driver version | |
acceptable_driver_version = "550.40.07" | |
current_driver_version = get_driver_version() | |
if parse(current_driver_version) < parse(acceptable_driver_version): | |
return False | |
return True | |
except Exception: | |
pass | |
return True | |
def check_fp8_capability(): | |
""" | |
Checks if all the current GPUs available support FP8. | |
Notably must initialize `torch.cuda` to check. | |
""" | |
cuda_device_capacity = torch.cuda.get_device_capability() | |
return cuda_device_capacity >= (8, 9) | |
class CPUInformation: | |
""" | |
Stores information about the CPU in a distributed environment. It contains the following attributes: | |
- rank: The rank of the current process. | |
- world_size: The total number of processes in the world. | |
- local_rank: The rank of the current process on the local node. | |
- local_world_size: The total number of processes on the local node. | |
""" | |
rank: int = field(default=0, metadata={"help": "The rank of the current process."}) | |
world_size: int = field(default=1, metadata={"help": "The total number of processes in the world."}) | |
local_rank: int = field(default=0, metadata={"help": "The rank of the current process on the local node."}) | |
local_world_size: int = field(default=1, metadata={"help": "The total number of processes on the local node."}) | |
def get_cpu_distributed_information() -> CPUInformation: | |
""" | |
Returns various information about the environment in relation to CPU distributed training as a `CPUInformation` | |
dataclass. | |
""" | |
information = {} | |
information["rank"] = get_int_from_env(["RANK", "PMI_RANK", "OMPI_COMM_WORLD_RANK", "MV2_COMM_WORLD_RANK"], 0) | |
information["world_size"] = get_int_from_env( | |
["WORLD_SIZE", "PMI_SIZE", "OMPI_COMM_WORLD_SIZE", "MV2_COMM_WORLD_SIZE"], 1 | |
) | |
information["local_rank"] = get_int_from_env( | |
["LOCAL_RANK", "MPI_LOCALRANKID", "OMPI_COMM_WORLD_LOCAL_RANK", "MV2_COMM_WORLD_LOCAL_RANK"], 0 | |
) | |
information["local_world_size"] = get_int_from_env( | |
["LOCAL_WORLD_SIZE", "MPI_LOCALNRANKS", "OMPI_COMM_WORLD_LOCAL_SIZE", "MV2_COMM_WORLD_LOCAL_SIZE"], | |
1, | |
) | |
return CPUInformation(**information) | |
def override_numa_affinity(local_process_index: int, verbose: Optional[bool] = None) -> None: | |
""" | |
Overrides whatever NUMA affinity is set for the current process. This is very taxing and requires recalculating the | |
affinity to set, ideally you should use `utils.environment.set_numa_affinity` instead. | |
Args: | |
local_process_index (int): | |
The index of the current process on the current server. | |
verbose (bool, *optional*): | |
Whether to log out the assignment of each CPU. If `ACCELERATE_DEBUG_MODE` is enabled, will default to True. | |
""" | |
if verbose is None: | |
verbose = parse_flag_from_env("ACCELERATE_DEBUG_MODE", False) | |
if torch.cuda.is_available(): | |
from accelerate.utils import is_pynvml_available | |
if not is_pynvml_available(): | |
raise ImportError( | |
"To set CPU affinity on CUDA GPUs the `pynvml` package must be available. (`pip install pynvml`)" | |
) | |
import pynvml as nvml | |
# The below code is based on https://github.com/NVIDIA/DeepLearningExamples/blob/master/TensorFlow2/LanguageModeling/BERT/gpu_affinity.py | |
nvml.nvmlInit() | |
num_elements = math.ceil(os.cpu_count() / 64) | |
handle = nvml.nvmlDeviceGetHandleByIndex(local_process_index) | |
affinity_string = "" | |
for j in nvml.nvmlDeviceGetCpuAffinity(handle, num_elements): | |
# assume nvml returns list of 64 bit ints | |
affinity_string = f"{j:064b}{affinity_string}" | |
affinity_list = [int(x) for x in affinity_string] | |
affinity_list.reverse() # so core 0 is the 0th element | |
affinity_to_set = [i for i, e in enumerate(affinity_list) if e != 0] | |
os.sched_setaffinity(0, affinity_to_set) | |
if verbose: | |
cpu_cores = os.sched_getaffinity(0) | |
logger.info(f"Assigning {len(cpu_cores)} cpu cores to process {local_process_index}: {cpu_cores}") | |
def set_numa_affinity(local_process_index: int, verbose: Optional[bool] = None) -> None: | |
""" | |
Assigns the current process to a specific NUMA node. Ideally most efficient when having at least 2 cpus per node. | |
This result is cached between calls. If you want to override it, please use | |
`accelerate.utils.environment.override_numa_afifnity`. | |
Args: | |
local_process_index (int): | |
The index of the current process on the current server. | |
verbose (bool, *optional*): | |
Whether to print the new cpu cores assignment for each process. If `ACCELERATE_DEBUG_MODE` is enabled, will | |
default to True. | |
""" | |
override_numa_affinity(local_process_index=local_process_index, verbose=verbose) | |