File size: 10,409 Bytes
8a6cf24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import math
import os
import platform
import subprocess
import sys
from dataclasses import dataclass, field
from functools import lru_cache
from shutil import which
from typing import List, Optional

import torch
from packaging.version import parse


logger = logging.getLogger(__name__)


def convert_dict_to_env_variables(current_env: dict):
    """
    Verifies that all keys and values in `current_env` do not contain illegal keys or values, and returns a list of
    strings as the result.

    Example:
    ```python
    >>> from accelerate.utils.environment import verify_env

    >>> env = {"ACCELERATE_DEBUG_MODE": "1", "BAD_ENV_NAME": "<mything", "OTHER_ENV": "2"}
    >>> valid_env_items = verify_env(env)
    >>> print(valid_env_items)
    ["ACCELERATE_DEBUG_MODE=1\n", "OTHER_ENV=2\n"]
    ```
    """
    forbidden_chars = [";", "\n", "<", ">", " "]
    valid_env_items = []
    for key, value in current_env.items():
        if all(char not in (key + value) for char in forbidden_chars) and len(key) >= 1 and len(value) >= 1:
            valid_env_items.append(f"{key}={value}\n")
        else:
            logger.warning(f"WARNING: Skipping {key}={value} as it contains forbidden characters or missing values.")
    return valid_env_items


def str_to_bool(value) -> int:
    """
    Converts a string representation of truth to `True` (1) or `False` (0).

    True values are `y`, `yes`, `t`, `true`, `on`, and `1`; False value are `n`, `no`, `f`, `false`, `off`, and `0`;
    """
    value = value.lower()
    if value in ("y", "yes", "t", "true", "on", "1"):
        return 1
    elif value in ("n", "no", "f", "false", "off", "0"):
        return 0
    else:
        raise ValueError(f"invalid truth value {value}")


def get_int_from_env(env_keys, default):
    """Returns the first positive env value found in the `env_keys` list or the default."""
    for e in env_keys:
        val = int(os.environ.get(e, -1))
        if val >= 0:
            return val
    return default


def parse_flag_from_env(key, default=False):
    """Returns truthy value for `key` from the env if available else the default."""
    value = os.environ.get(key, str(default))
    return str_to_bool(value) == 1  # As its name indicates `str_to_bool` actually returns an int...


def parse_choice_from_env(key, default="no"):
    value = os.environ.get(key, str(default))
    return value


def are_libraries_initialized(*library_names: str) -> List[str]:
    """
    Checks if any of `library_names` are imported in the environment. Will return any names that are.
    """
    return [lib_name for lib_name in library_names if lib_name in sys.modules.keys()]


def _nvidia_smi():
    """
    Returns the right nvidia-smi command based on the system.
    """
    if platform.system() == "Windows":
        # If platform is Windows and nvidia-smi can't be found in path
        # try from systemd drive with default installation path
        command = which("nvidia-smi")
        if command is None:
            command = "%s\\Program Files\\NVIDIA Corporation\\NVSMI\\nvidia-smi.exe" % os.environ["systemdrive"]
    else:
        command = "nvidia-smi"
    return command


def get_gpu_info():
    """
    Gets GPU count and names using `nvidia-smi` instead of torch to not initialize CUDA.

    Largely based on the `gputil` library.
    """
    # Returns as list of `n` GPUs and their names
    output = subprocess.check_output(
        [_nvidia_smi(), "--query-gpu=count,name", "--format=csv,noheader"], universal_newlines=True
    )
    output = output.strip()
    gpus = output.split(os.linesep)
    # Get names from output
    gpu_count = len(gpus)
    gpu_names = [gpu.split(",")[1].strip() for gpu in gpus]
    return gpu_names, gpu_count


def get_driver_version():
    """
    Returns the driver version

    In the case of multiple GPUs, will return the first.
    """
    output = subprocess.check_output(
        [_nvidia_smi(), "--query-gpu=driver_version", "--format=csv,noheader"], universal_newlines=True
    )
    output = output.strip()
    return output.split(os.linesep)[0]


def check_cuda_p2p_ib_support():
    """
    Checks if the devices being used have issues with P2P and IB communications, namely any consumer GPU hardware after
    the 3090.

    Noteably uses `nvidia-smi` instead of torch to not initialize CUDA.
    """
    try:
        device_names, device_count = get_gpu_info()
        # As new consumer GPUs get released, add them to `unsupported_devices``
        unsupported_devices = {"RTX 40"}
        if device_count > 1:
            if any(
                unsupported_device in device_name
                for device_name in device_names
                for unsupported_device in unsupported_devices
            ):
                # Check if they have the right driver version
                acceptable_driver_version = "550.40.07"
                current_driver_version = get_driver_version()
                if parse(current_driver_version) < parse(acceptable_driver_version):
                    return False
                return True
    except Exception:
        pass
    return True


def check_fp8_capability():
    """
    Checks if all the current GPUs available support FP8.

    Notably must initialize `torch.cuda` to check.
    """
    cuda_device_capacity = torch.cuda.get_device_capability()
    return cuda_device_capacity >= (8, 9)


@dataclass
class CPUInformation:
    """
    Stores information about the CPU in a distributed environment. It contains the following attributes:
    - rank: The rank of the current process.
    - world_size: The total number of processes in the world.
    - local_rank: The rank of the current process on the local node.
    - local_world_size: The total number of processes on the local node.
    """

    rank: int = field(default=0, metadata={"help": "The rank of the current process."})
    world_size: int = field(default=1, metadata={"help": "The total number of processes in the world."})
    local_rank: int = field(default=0, metadata={"help": "The rank of the current process on the local node."})
    local_world_size: int = field(default=1, metadata={"help": "The total number of processes on the local node."})


def get_cpu_distributed_information() -> CPUInformation:
    """
    Returns various information about the environment in relation to CPU distributed training as a `CPUInformation`
    dataclass.
    """
    information = {}
    information["rank"] = get_int_from_env(["RANK", "PMI_RANK", "OMPI_COMM_WORLD_RANK", "MV2_COMM_WORLD_RANK"], 0)
    information["world_size"] = get_int_from_env(
        ["WORLD_SIZE", "PMI_SIZE", "OMPI_COMM_WORLD_SIZE", "MV2_COMM_WORLD_SIZE"], 1
    )
    information["local_rank"] = get_int_from_env(
        ["LOCAL_RANK", "MPI_LOCALRANKID", "OMPI_COMM_WORLD_LOCAL_RANK", "MV2_COMM_WORLD_LOCAL_RANK"], 0
    )
    information["local_world_size"] = get_int_from_env(
        ["LOCAL_WORLD_SIZE", "MPI_LOCALNRANKS", "OMPI_COMM_WORLD_LOCAL_SIZE", "MV2_COMM_WORLD_LOCAL_SIZE"],
        1,
    )
    return CPUInformation(**information)


def override_numa_affinity(local_process_index: int, verbose: Optional[bool] = None) -> None:
    """
    Overrides whatever NUMA affinity is set for the current process. This is very taxing and requires recalculating the
    affinity to set, ideally you should use `utils.environment.set_numa_affinity` instead.

    Args:
        local_process_index (int):
            The index of the current process on the current server.
        verbose (bool, *optional*):
            Whether to log out the assignment of each CPU. If `ACCELERATE_DEBUG_MODE` is enabled, will default to True.
    """
    if verbose is None:
        verbose = parse_flag_from_env("ACCELERATE_DEBUG_MODE", False)
    if torch.cuda.is_available():
        from accelerate.utils import is_pynvml_available

        if not is_pynvml_available():
            raise ImportError(
                "To set CPU affinity on CUDA GPUs the `pynvml` package must be available. (`pip install pynvml`)"
            )
        import pynvml as nvml

        # The below code is based on https://github.com/NVIDIA/DeepLearningExamples/blob/master/TensorFlow2/LanguageModeling/BERT/gpu_affinity.py
        nvml.nvmlInit()
        num_elements = math.ceil(os.cpu_count() / 64)
        handle = nvml.nvmlDeviceGetHandleByIndex(local_process_index)
        affinity_string = ""
        for j in nvml.nvmlDeviceGetCpuAffinity(handle, num_elements):
            # assume nvml returns list of 64 bit ints
            affinity_string = f"{j:064b}{affinity_string}"
        affinity_list = [int(x) for x in affinity_string]
        affinity_list.reverse()  # so core 0 is the 0th element
        affinity_to_set = [i for i, e in enumerate(affinity_list) if e != 0]
        os.sched_setaffinity(0, affinity_to_set)
        if verbose:
            cpu_cores = os.sched_getaffinity(0)
            logger.info(f"Assigning {len(cpu_cores)} cpu cores to process {local_process_index}: {cpu_cores}")


@lru_cache
def set_numa_affinity(local_process_index: int, verbose: Optional[bool] = None) -> None:
    """
    Assigns the current process to a specific NUMA node. Ideally most efficient when having at least 2 cpus per node.

    This result is cached between calls. If you want to override it, please use
    `accelerate.utils.environment.override_numa_afifnity`.

    Args:
        local_process_index (int):
            The index of the current process on the current server.
        verbose (bool, *optional*):
            Whether to print the new cpu cores assignment for each process. If `ACCELERATE_DEBUG_MODE` is enabled, will
            default to True.
    """
    override_numa_affinity(local_process_index=local_process_index, verbose=verbose)