Spaces:
Runtime error
Runtime error
import sentencepiece | |
import streamlit as st | |
import pandas as pd | |
import spacy | |
import roner | |
example_list = [ | |
"Ana merge în București.", | |
"""Ana merge în București. Ana merge în București. Ana merge în București. Ana merge în București. Ana merge în București. Ana merge în București.""" | |
] | |
st.set_page_config(layout="wide") | |
st.title("Demo for Romanian NER") | |
model_list = ['dumitrescustefan/bert-base-romanian-ner'] | |
st.sidebar.header("Select NER Model") | |
model_checkpoint = st.sidebar.radio("", model_list) | |
st.sidebar.write("This demo is based on RoNER: 'https://github.com/dumitrescustefan/roner'") | |
st.sidebar.write("") | |
st.sidebar.header("Select type of PERSON detection") | |
named_persons_only = st.sidebar.radio("", ('Proper nouns only', 'All nouns')) | |
st.sidebar.write("Types of entities detected: 'PERSON', 'ORG', 'GPE', 'LOC', 'NAT_REL_POL', 'EVENT', 'LANGUAGE', 'WORK_OF_ART', 'DATETIME', 'PERIOD', 'MONEY', 'QUANTITY', 'NUMERIC', 'ORDINAL', 'FACILITY'") | |
st.subheader("Select Text Input Method") | |
input_method = st.radio("", ('Select from Examples', 'Write or Paste New Text')) | |
if input_method == 'Select from Examples': | |
selected_text = st.selectbox('Select Text from List', example_list, index=0, key=1) | |
st.subheader("Text to Run") | |
input_text = st.text_area("Selected Text", selected_text, height=128, max_chars=None, key=2) | |
elif input_method == "Write or Paste New Text": | |
st.subheader("Text to Run") | |
input_text = st.text_area('Write or Paste Text Below', value="", height=128, max_chars=None, key=2) | |
def setModel(named_persons_only): | |
ner = roner.NER(named_persons_only=named_persons_only) | |
return ner | |
def get_html(html: str): | |
WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>""" | |
html = html.replace("\n", " ") | |
return WRAPPER.format(html) | |
Run_Button = st.button("Run", key=None) | |
if Run_Button == True: | |
ner = setModel(named_persons_only = False) | |
output = ner(input_text)[0] # only one sentence | |
# tabular form | |
data = [] | |
for word in output["words"]: | |
if word["tag"]!="O": | |
data.append({ | |
"word": word["text"], | |
"entity": word["tag"], | |
"start_char": word["start_char"], | |
"end_char": word["end_char"] | |
}) | |
df = pd.DataFrame.from_dict(data) | |
st.subheader("Recognized Entities") | |
st.dataframe(df) | |
st.subheader("Spacy Style Display") | |
spacy_display = {} | |
spacy_display["ents"] = [] | |
spacy_display["text"] = output["text"] | |
spacy_display["title"] = None | |
for word in output["words"]: | |
if word["tag"]!="O": | |
spacy_display["ents"].append({"start": word["start_char"], "end": word["end_char"], "label": word["tag"]}) | |
entity_list = ['PERSON', 'ORG', 'GPE', 'LOC', 'NAT_REL_POL', | |
'EVENT', 'LANGUAGE', 'WORK_OF_ART', 'DATETIME', | |
'PERIOD', 'MONEY', 'QUANTITY', 'NUMERIC', | |
'ORDINAL', 'FACILITY'] | |
colors = { | |
'PERSON': '#F00', | |
'ORG': '#F00', | |
'GPE': '#F00', | |
'LOC': '#F00', | |
'NAT_REL_POL': '#F00', | |
'EVENT': '#F00', | |
'LANGUAGE': '#F00', | |
'WORK_OF_ART': '#F00', | |
'DATETIME': '#F00', | |
'PERIOD': '#F00', | |
'MONEY': '#F00', | |
'QUANTITY': '#F00', | |
'NUMERIC': '#F00', | |
'ORDINAL': '#F00', | |
'FACILITY': '#F00', | |
} | |
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True, options={"ents": entity_list, "colors": colors}) | |
style = "<style>mark.entity { display: inline-block }</style>" | |
st.write(f"{style}{get_html(html)}", unsafe_allow_html=True) |